
Architecture of the World Wide Web, Volume One

Architecture of the World Wide Web, Volume
One
W3C Recommendation 15 December 2004

This version:
http://www.w3.org/TR/2004/REC-webarch-20041215/

Latest version:
http://www.w3.org/TR/webarch/

Previous version:
http://www.w3.org/TR/2004/PR-webarch-20041105/

Editors:
Ian Jacobs, W3C
Norman Walsh, Sun Microsystems, Inc.

Authors:
See acknowledgments (§8) (see page 58).

Please refer to the errata for this document, which may include some normative
corrections.

See also translations.

Copyright © 2002-2004 W3C ® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark,
document use and software licensing rules apply. Your interactions with this site are in accordance with
our public and Member privacy statements.

Abstract

The World Wide Web uses relatively simple technologies with sufficient scalability,
efficiency and utility that they have resulted in a remarkable information space of
interrelated resources, growing across languages, cultures, and media. In an effort
to preserve these properties of the information space as the technologies evolve,
this architecture document discusses the core design components of the Web. They
are identification of resources, representation of resource state, and the protocols
that support the interaction between agents and resources in the space. We relate
core design components, constraints, and good practices to the principles and
properties they support.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 1 / 58

http://www.w3.org/
http://www.w3.org/TR/2004/REC-webarch-20041215/
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/2004/PR-webarch-20041105/
http://www.w3.org/People/Jacobs
http://www.w3.org/2001/tag/webarch/errata.html
http://www.w3.org/2003/03/Translations/byTechnology?technology=webarch
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software
http://www.w3.org/Consortium/Legal/privacy-statement#Public
http://www.w3.org/Consortium/Legal/privacy-statement#Members

Architecture of the World Wide Web, Volume One

Status of this document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C publications
and the latest revision of this technical report can be found in the W3C technical
reports index at http://www.w3.org/TR/.

This is the 15 December 2004 Recommendation of “Architecture of the World Wide
Web, Volume One.” This document has been reviewed by W3C Members, by
software developers, and by other W3C groups and interested parties, and is
endorsed by the Director as a W3C Recommendation. It is a stable document and
may be used as reference material or cited from another document. W3C's role in
making the Recommendation is to draw attention to the specification and to
promote its widespread deployment. This enhances the functionality and
interoperability of the Web.

This document was developed by W3C's Technical Architecture Group (TAG),
which, by charter maintains a list of architectural issues. The scope of this
document is a useful subset of those issues; it is not intended to address all of
them. The TAG intends to address the remaining (and future) issues now that
Volume One is published as a W3C Recommendation. A complete history of
changes so this document is available. Please send comments on this document to
public-webarch-comments@w3.org (public archive of public-webarch-comments).
TAG technical discussion takes place on www-tag@w3.org (public archive of www-
tag).

This document was produced under the W3C IPR policy of the July 2001 Process
Document. The TAG maintains a public list of patent disclosures relevant to this
document; that page also includes instructions for disclosing a patent. An individual
who has actual knowledge of a patent which the individual believes contains
Essential Claim(s) with respect to this specification should disclose the information
in accordance with section 6 of the W3C Patent Policy.

Table of Contents

1. Introduction (see page 5)
1.1. About this Document (see page 7)

1.1.1. Audience of this Document (see page 8)
1.1.2. Scope of this Document (see page 8)
1.1.3. Principles, Constraints, and Good Practice Notes (see page
9)

2. Identification (see page 10)
2.1. Benefits of URIs (see page 10)
2.2. URI/Resource Relationships (see page 10)

2.2.1. URI collision (see page 12)
2.2.2. URI allocation (see page 12)
2.2.3. Indirect Identification (see page 13)

2.3. URI Comparisons (see page 14)
2.3.1. URI aliases (see page 14)
2.3.2. Representation reuse (see page 15)

2.4. URI Schemes (see page 16)
2.4.1. URI Scheme Registration (see page 16)

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 2 / 58

http://www.w3.org/TR/
http://www.w3.org/2001/tag/
http://www.w3.org/2001/07/19-tag
http://www.w3.org/2001/tag/issues.html
http://www.w3.org/2001/tag/webarch/changes.html
http://lists.w3.org/Archives/Public/public-webarch-comments/
http://lists.w3.org/Archives/Public/public-webarch-comments/
http://www.w3.org/Consortium/Process-20010719/policies#ipr
http://www.w3.org/2001/tag/disclosures
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

Architecture of the World Wide Web, Volume One

2.5. URI Opacity (see page 17)
2.6. Fragment Identifiers (see page 18)
2.7. Future Directions for Identifiers (see page 18)

2.7.1. Internationalized identifiers (see page 19)
2.7.2. Assertion that two URIs identify the same resource (see
page 19)

3. Interaction (see page 20)
3.1. Using a URI to Access a Resource (see page 20)

3.1.1. Details of retrieving a representation (see page 21)
3.2. Representation Types and Internet Media Types (see page 22)

3.2.1. Representation types and fragment identifier semantics (see
page 23)
3.2.2. Fragment identifiers and content negotiation

3.3. Inconsistencies between Representation Data and Metadata (see
page 25)
3.4. Safe Interactions (see page 26)

3.4.1. Unsafe interactions and accountability (see page 28)
3.5. Representation Management (see page 28)

3.5.1. URI persistence (see page 29)
3.5.2. Linking and access control (see page 30)
3.5.3. Supporting Navigation (see page 30)

3.6. Future Directions for Interaction (see page 31)
4. Data Formats (see page 32)

4.1. Binary and Textual Data Formats (see page 32)
4.2. Versioning and Extensibility (see page 33)

4.2.1. Versioning (see page 33)
4.2.2. Versioning and XML namespace policy (see page 34)
4.2.3. Extensibility (see page 35)
4.2.4. Composition of data formats (see page 36)

4.3. Separation of Content, Presentation, and Interaction (see page 36)
4.4. Hypertext (see page 38)

4.4.1. URI references (see page 39)
4.5. XML-Based Data Formats (see page 39)

4.5.1. When to use an XML-based format (see page 39)
4.5.2. Links in XML (see page 40)
4.5.3. XML namespaces (see page 40)
4.5.4. Namespace documents (see page 41)
4.5.5. QNames in XML (see page 42)
4.5.6. XML ID semantics (see page 43)
4.5.7. Media types for XML (see page 44)
4.5.8. Fragment identifiers in XML (see page 44)

4.6. Future Directions for Data Formats (see page 45)
5. General Architecture Principles (see page 46)

5.1. Orthogonal Specifications (see page 46)
5.2. Extensibility (see page 47)
5.3. Error Handling (see page 48)
5.4. Protocol-based Interoperability (see page 49)

6. Glossary (see page 50)
7. References (see page 52)

7.1. Architectural Specifications (see page 56)
8. Acknowledgments (see page 58)

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 3 / 58

Architecture of the World Wide Web, Volume One

List of Principles, Constraints, and Good Practice Notes

The following principles, constraints, and good practice notes are discussed in this
document and listed here for convenience. There is also a free-standing summary.

Identification
 Global Identifiers (see page 10) (principle, 2)
 Identify with URIs (see page 10) (practice, 2.1)
 URIs Identify a Single Resource (see page 11) (constraint, 2.2)
 Avoiding URI aliases (see page 15) (practice, 2.3.1)
 Consistent URI usage (see page 15) (practice, 2.3.1)
 Reuse URI schemes (see page 16) (practice, 2.4)
 URI opacity (see page 17) (practice, 2.5)

Interaction
 Reuse representation formats (see page 23) (practice, 3.2)
 Data-metadata inconsistency (see page 25) (constraint, 3.3)
 Metadata association (see page 26) (practice, 3.3)
 Safe retrieval (see page 27) (principle, 3.4)
 Available representation (see page 28) (practice, 3.5)
 Reference does not imply dereference (see page 29) (principle, 3.5)
 Consistent representation (see page 29) (practice, 3.5.1)

Data Formats
 Version information (see page 33) (practice, 4.2.1)
 Namespace policy (see page 34) (practice, 4.2.2)
 Extensibility mechanisms (see page 35) (practice, 4.2.3)
 Extensibility conformance (see page 35) (practice, 4.2.3)
 Unknown extensions (see page 35) (practice, 4.2.3)
 Separation of content, presentation, interaction (see page 37) (practice,

4.3)
 Link identification (see page 38) (practice, 4.4)
 Web linking (see page 38) (practice, 4.4)
 Generic URIs (see page 38) (practice, 4.4)
 Hypertext links (see page 39) (practice, 4.4)
 Namespace adoption (see page 41) (practice, 4.5.3)
 Namespace documents (see page 42) (practice, 4.5.4)
 QNames Indistinguishable from URIs (see page 43) (constraint, 4.5.5)
 QName Mapping (see page 43) (practice, 4.5.5)
 XML and "text/*" (see page 44) (practice, 4.5.7)
 XML and character encodings (see page 44) (practice, 4.5.7)

General Architecture Principles
 Orthogonality (see page 46) (principle, 5.1)
 Error recovery (see page 48) (principle, 5.3)

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 4 / 58

http://www.w3.org/TR/webarch/summary.html

Architecture of the World Wide Web, Volume One

1. Introduction

The World Wide Web (WWW, or simply Web) is an information space in which the
items of interest, referred to as resources, are identified by global identifiers called
Uniform Resource Identifiers (URI).

Examples such as the following travel scenario are used throughout this document
to illustrate typical behavior of Web agents—people or software acting on this
information space. A user agent acts on behalf of a user. Software agents include
servers, proxies, spiders, browsers, and multimedia players.

This scenario illustrates the three architectural bases of the Web that are discussed
in this document:

1. Identification (§2) (see page 10). URIs are used to identify resources. In this
travel scenario, the resource is a periodically updated report on the weather in
Oaxaca, and the URI is “http://weather.example.com/oaxaca”.

2. Interaction (§3) (see page 20). Web agents communicate using standardized
protocols that enable interaction through the exchange of messages which
adhere to a defined syntax and semantics. By entering a URI into a retrieval
dialog or selecting a hypertext link, Nadia tells her browser to perform a
retrieval action for the resource identified by the URI. In this example, the
browser sends an HTTP GET request (part of the HTTP protocol) to the
server at "weather.example.com", via TCP/IP port 80, and the server sends
back a message containing what it determines to be a representation of the
resource as of the time that representation was generated. Note that this
example is specific to hypertext browsing of information—other kinds of
interaction are possible, both within browsers and through the use of other
types of Web agent; our example is intended to illustrate one common

Story

While planning a trip to Mexico, Nadia reads “Oaxaca weather
information: 'http://weather.example.com/oaxaca'” in a glossy travel
magazine. Nadia has enough experience with the Web to recognize that
"http://weather.example.com/oaxaca" is a URI and that she is likely to be
able to retrieve associated information with her Web browser. When
Nadia enters the URI into her browser:

1. The browser recognizes that what Nadia typed is a URI.
2. The browser performs an information retrieval action in accordance

with its configured behavior for resources identified via the "http"
URI scheme.

3. The authority responsible for "weather.example.com" provides
information in a response to the retrieval request.

4. The browser interprets the response, identified as XHTML by the
server, and performs additional retrieval actions for inline graphics
and other content as necessary.

5. The browser displays the retrieved information, which includes
hypertext links to other information. Nadia can follow these
hypertext links to retrieve additional information.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 5 / 58

Architecture of the World Wide Web, Volume One

interaction, not define the range of possible interactions or limit the ways in
which agents might use the Web.

3. Formats (§4) (see page 32). Most protocols used for representation retrieval
and/or submission make use of a sequence of one or more messages, which
taken together contain a payload of representation data and metadata, to
transfer the representation between agents. The choice of interaction protocol
places limits on the formats of representation data and metadata that can be
transmitted. HTTP, for example, typically transmits a single octet stream plus
metadata, and uses the "Content-Type" and "Content-Encoding" header fields
to further identify the format of the representation. In this scenario, the
representation transferred is in XHTML, as identified by the "Content-type"
HTTP header field containing the registered Internet media type name,
"application/xhtml+xml". That Internet media type name indicates that the
representation data can be processed according to the XHTML specification.

Nadia's browser is configured and programmed to interpret the receipt of an
"application/xhtml+xml" typed representation as an instruction to render the
content of that representation according to the XHTML rendering model,
including any subsidiary interactions (such as requests for external style
sheets or in-line images) called for by the representation. In the scenario, the
XHTML representation data received from the initial request instructs Nadia's
browser to also retrieve and render in-line the weather maps, each identified
by a URI and thus causing an additional retrieval action, resulting in additional
representations that are processed by the browser according to their own data
formats (e.g., "application/svg+xml" indicates the SVG data format), and this
process continues until all of the data formats have been rendered. The result
of all of this processing, once the browser has reached an application steady-
state that completes Nadia's initial requested action, is commonly referred to
as a "Web page".

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 6 / 58

Architecture of the World Wide Web, Volume One

The following illustration shows the relationship between identifier, resource, and
representation.

In the remainder of this document, we highlight important architectural points
regarding Web identifiers, protocols, and formats. We also discuss some important
general architectural principles (§5) and how they apply to the Web.

1.1. About this Document

This document describes the properties we desire of the Web and the design
choices that have been made to achieve them. It promotes the reuse of existing
standards when suitable, and gives guidance on how to innovate in a manner
consistent with Web architecture.

The terms MUST, MUST NOT, SHOULD, SHOULD NOT, and MAY are used in the
principles, constraints, and good practice notes in accordance with RFC 2119
[RFC2119 (see page 53)].

This document does not include conformance provisions for these reasons:

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 7 / 58

Architecture of the World Wide Web, Volume One

 Conforming software is expected to be so diverse that it would not be useful to
be able to refer to the class of conforming software agents.

 Some of the good practice notes concern people; specifications generally
define conformance for software, not people.

 We do not believe that the addition of a conformance section is likely to
increase the utility of the document.

1.1.1. Audience of this Document

This document is intended to inform discussions about issues of Web architecture.
The intended audience for this document includes:

1. Participants in W3C Activities
2. Other groups and individuals designing technologies to be integrated into the

Web
3. Implementers of W3C specifications
4. Web content authors and publishers

Note: This document does not distinguish in any formal way the terms "language"
and "format." Context determines which term is used. The phrase "specification
designer" encompasses language, format, and protocol designers.

1.1.2. Scope of this Document

This document presents the general architecture of the Web. Other groups inside
and outside W3C also address specialized aspects of Web architecture, including
accessibility, quality assurance, internationalization, device independence, and Web
Services. The section on Architectural Specifications (§7.1) (see page 56) includes
references to these related specifications.

This document strives for a balance between brevity and precision while including
illustrative examples. TAG findings are informational documents that complement
the current document by providing more detail about selected topics. This document
includes some excerpts from the findings. Since the findings evolve independently,
this document includes references to approved TAG findings. For other TAG issues
covered by this document but without an approved finding, references are to entries
in the TAG issues list.

Many of the examples in this document that involve human activity suppose the
familiar Web interaction model (illustrated at the beginning of the Introduction)
where a person follows a link via a user agent, the user agent retrieves and
presents data, the user follows another link, etc. This document does not discuss in
any detail other interaction models such as voice browsing (see, for example,
[VOICEXML2 (see page 55)]). The choice of interaction model may have an impact
on expected agent behavior. For instance, when a graphical user agent running on
a laptop computer or hand-held device encounters an error, the user agent can
report errors directly to the user through visual and audio cues, and present the
user with options for resolving the errors. On the other hand, when someone is
browsing the Web through voice input and audio-only output, stopping the dialog to
wait for user input may reduce usability since it is so easy to "lose one's place"
when browsing with only audio-output. This document does not discuss how the
principles, constraints, and good practices identified here apply in all interaction
contexts.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 8 / 58

http://www.w3.org/2001/tag/findings
http://www.w3.org/2001/tag/issues.html

Architecture of the World Wide Web, Volume One

1.1.3. Principles, Constraints, and Good Practice Notes

The important points of this document are categorized as follows:

Principle
An architectural principle is a fundamental rule that applies to a large number
of situations and variables. Architectural principles include "separation of
concerns", "generic interface", "self-descriptive syntax," "visible semantics,"
"network effect" (Metcalfe's Law), and Amdahl's Law: "The speed of a system
is limited by its slowest component."

Constraint
In the design of the Web, some choices, like the names of the p and li
elements in HTML, the choice of the colon (:) character in URIs, or grouping
bits into eight-bit units (octets), are somewhat arbitrary; if paragraph had been
chosen instead of p or asterisk (*) instead of colon, the large-scale result
would, most likely, have been the same. This document focuses on more
fundamental design choices: design choices that lead to constraints, i.e.,
restrictions in behavior or interaction within the system. Constraints may be
imposed for technical, policy, or other reasons to achieve desirable properties
in the system, such as accessibility, global scope, relative ease of evolution,
efficiency, and dynamic extensibility.

Good practice
Good practice—by software developers, content authors, site managers,
users, and specification designers—increases the value of the Web.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 9 / 58

Architecture of the World Wide Web, Volume One

2. Identification

In order to communicate internally, a community agrees (to a reasonable extent) on
a set of terms and their meanings. One goal of the Web, since its inception, has
been to build a global community in which any party can share information with any
other party. To achieve this goal, the Web makes use of a single global
identification system: the URI. URIs are a cornerstone of Web architecture,
providing identification that is common across the Web. The global scope of URIs
promotes large-scale "network effects": the value of an identifier increases the more
it is used consistently (for example, the more it is used in hypertext links (§4.4)).

This principle dates back at least as far as Douglas Engelbart's seminal work on
open hypertext systems; see section Every Object Addressable in [Eng90 (see
page 52)].

2.1. Benefits of URIs

The choice of syntax for global identifiers is somewhat arbitrary; it is their global
scope that is important. The Uniform Resource Identifier, [URI (see page 55)],
has been successfully deployed since the creation of the Web. There are
substantial benefits to participating in the existing network of URIs, including linking,
bookmarking, caching, and indexing by search engines, and there are substantial
costs to creating a new identification system that has the same properties as URIs.

A resource should have an associated URI if another party might reasonably want
to create a hypertext link to it, make or refute assertions about it, retrieve or cache a
representation of it, include all or part of it by reference into another representation,
annotate it, or perform other operations on it. Software developers should expect
that sharing URIs across applications will be useful, even if that utility is not initially
evident. The TAG finding "URIs, Addressability, and the use of HTTP GET and
POST" discusses additional benefits and considerations of URI addressability.

Note: Some URI schemes (such as the "ftp" URI scheme specification) use the
term "designate" where this document uses "identify."

2.2. URI/Resource Relationships

By design a URI identifies one resource. We do not limit the scope of what might be
a resource. The term "resource" is used in a general sense for whatever might be
identified by a URI. It is conventional on the hypertext Web to describe Web pages,
images, product catalogs, etc. as “resources”. The distinguishing characteristic of

Principle: Global Identifiers

Global naming leads to global network effects.

Good practice: Identify with URIs

To benefit from and increase the value of the World Wide Web, agents
should provide URIs as identifiers for resources.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 10 / 58

http://www.bootstrap.org/augdocs/augment-132082.htm#11K
http://www.w3.org/2001/tag/doc/whenToUseGet.html

Architecture of the World Wide Web, Volume One

these resources is that all of their essential characteristics can be conveyed in a
message. We identify this set as “information resources.”

This document is an example of an information resource. It consists of words and
punctuation symbols and graphics and other artifacts that can be encoded, with
varying degrees of fidelity, into a sequence of bits. There is nothing about the
essential information content of this document that cannot in principle be transfered
in a message. In the case of this document, the message payload is the
representation (see page 22) of this document.

However, our use of the term resource is intentionally more broad. Other things,
such as cars and dogs (and, if you've printed this document on physical sheets of
paper, the artifact that you are holding in your hand), are resources too. They are
not information resources, however, because their essence is not information.
Although it is possible to describe a great many things about a car or a dog in a
sequence of bits, the sum of those things will invariably be an approximation of the
essential character of the resource.

We define the term “information resource” because we observe that it is useful in
discussions of Web technology and may be useful in constructing specifications for
facilities built for use on the Web.

Since the scope of a URI is global, the resource identified by a URI does not
depend on the context in which the URI appears (see also the section about indirect
identification (§2.2.3)).

[URI (see page 55)] is an agreement about how the Internet community allocates
names and associates them with the resources they identify. URIs are divided into
schemes (§2.4) (see page 16) that define, via their scheme specification, the
mechanism by which scheme-specific identifiers are associated with resources. For
example, the "http" URI scheme ([RFC2616 (see page 54)]) uses DNS and TCP-
based HTTP servers for the purpose of identifier allocation and resolution. As a
result, identifiers such as "http://example.com/somepath#someFrag" often take on
meaning through the community experience of performing an HTTP GET request
on the identifier and, if given a successful response, interpreting the response as a
representation of the identified resource. (See also Fragment Identifiers (§2.6) (see
page 18).) Of course, a retrieval action like GET is not the only way to obtain
information about a resource. One might also publish a document that purports to
define the meaning of a particular URI. These other sources of information may
suggest meanings for such identifiers, but it's a local policy decision whether those
suggestions should be heeded.

Just as one might wish to refer to a person by different names (by full name, first
name only, sports nickname, romantic nickname, and so forth), Web architecture
allows the association of more than one URI with a resource. URIs that identify the
same resource are called URI aliases. The section on URI aliases (§2.3.1) (see
page 14) discusses some of the potential costs of creating multiple URIs for the
same resource.

Constraint: URIs Identify a Single Resource

Assign distinct URIs to distinct resources.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 11 / 58

Architecture of the World Wide Web, Volume One

Several sections of this document address questions about the relationship
between URIs and resources, including:

 How much can I tell about a resource by inspection of a URI that identifies it?
See the sections on URI schemes (§2.4) (see page 16) and URI opacity (§2.5)
(see page 17).

 Who determines what resource a URI identifies? See the section on URI
allocation (§2.2.2) (see page 12).

 Can the resource identified by a URI change over time? See the sections on
URI persistence (§3.5.1) (see page 29) and representation management
(§3.5) (see page 28).

 Since more than one URI can identify the same resource, how do I know
which URIs identify the same resource? See the sections on URI comparison
(§2.3) (see page 14) and assertions that two URIs identify the same resource
(§2.7.2) (see page 19).

2.2.1. URI collision

By design, a URI identifies one resource. Using the same URI to directly identify
different resources produces a URI collision. Collision often imposes a cost in
communication due to the effort required to resolve ambiguities.

Suppose, for example, that one organization makes use of a URI to refer to the
movie The Sting, and another organization uses the same URI to refer to a
discussion forum about The Sting. To a third party, aware of both organizations, this
collision creates confusion about what the URI identifies, undermining the value of
the URI. If one wanted to talk about the creation date of the resource identified by
the URI, for instance, it would not be clear whether this meant "when the movie was
created" or "when the discussion forum about the movie was created."

Social and technical solutions have been devised to help avoid URI collision.
However, the success or failure of these different approaches depends on the
extent to which there is consensus in the Internet community on abiding by the
defining specifications.

The section on URI allocation (§2.2.2) examines approaches for establishing the
authoritative source of information about what resource a URI identifies.

URIs are sometimes used for indirect identification (§2.2.3). This does not
necessarily lead to collisions.

2.2.2. URI allocation

URI allocation is the process of associating a URI with a resource. Allocation can be
performed both by resource owners and by other parties. It is important to avoid
URI collision (§2.2.1) (see page 12).

2.2.2.1. URI ownership

URI ownership is a relation between a URI and a social entity, such as a person,
organization, or specification. URI ownership gives the relevant social entity certain
rights, including:

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 12 / 58

Architecture of the World Wide Web, Volume One

1. to pass on ownership of some or all owned URIs to another owner—
delegation; and

2. to associate a resource with an owned URI—URI allocation.

By social convention, URI ownership is delegated from the IANA URI scheme
registry [IANASchemes], itself a social entity, to IANA-registered URI scheme
specifications. Some URI scheme specifications further delegate ownership to
subordinate registries or to other nominated owners, who may further delegate
ownership. In the case of a specification, ownership ultimately lies with the
community that maintains the specification.

The approach taken for the "http" URI scheme, for example, follows the pattern
whereby the Internet community delegates authority, via the IANA URI scheme
registry and the DNS, over a set of URIs with a common prefix to one particular
owner. One consequence of this approach is the Web's heavy reliance on the
central DNS registry. A different approach is taken by the URN Syntax scheme
[RFC2141 (see page 53)] which delegates ownership of portions of URN space to
URN Namespace specifications which themselves are registered in an IANA-
maintained registry of URN Namespace Identifiers.

URI owners are responsible for avoiding the assignment of equivalent URIs to
multiple resources. Thus, if a URI scheme specification does provide for the
delegation of individual or organized sets of URIs, it should take pains to ensure
that ownership ultimately resides in the hands of a single social entity. Allowing
multiple owners increases the likelihood of URI collisions.

URI owners may organize or deploy infrastruture to ensure that representations of
associated resources are available and, where appropriate, interaction with the
resource is possible through the exchange of representations. There are social
expectations for responsible representation management (§3.5) by URI owners.
Additional social implications of URI ownership are not discussed here.

See TAG issue siteData-36, which concerns the expropriation of naming authority.

2.2.2.2. Other allocation schemes

Some schemes use techniques other than delegated ownership to avoid collision.
For example, the specification for the data URL (sic) scheme [RFC2397 (see page
53)] specifies that the resource identified by a data scheme URI has only one
possible representation. The representation data makes up the URI that identifies
that resource. Thus, the specification itself determines how data URIs are allocated;
no delegation is possible.

Other schemes (such as "news:comp.text.xml") rely on a social process.

2.2.3. Indirect Identification

To say that the URI "mailto:nadia@example.com" identifies both an Internet mailbox
and Nadia, the person, introduces a URI collision. However, we can use the URI to
indirectly identify Nadia. Identifiers are commonly used in this way.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 13 / 58

http://www.w3.org/2001/tag/issues.html#siteData-36

Architecture of the World Wide Web, Volume One

Listening to a news broadcast, one might hear a report on Britain that begins,
"Today, 10 Downing Street announced a series of new economic measures."
Generally, "10 Downing Street" identifies the official residence of Britain's Prime
Minister. In this context, the news reporter is using it (as English rhetoric allows) to
indirectly identify the British government. Similarly, URIs identify resources, but they
can also be used in many constructs to indirectly identify other resources. Globally
adopted assignment policies make some URIs appealing as general-purpose
identifiers. Local policy establishes what they indirectly identify.

Suppose that nadia@example.com is Nadia's email address. The organizers of a
conference Nadia attends might use "mailto:nadia@example.com" to refer indirectly
to her (e.g., by using the URI as a database key in their database of conference
participants). This does not introduce a URI collision.

2.3. URI Comparisons

URIs that are identical, character-by-character, refer to the same resource. Since
Web Architecture allows the association of multiple URIs with a given resource, two
URIs that are not character-by-character identical may still refer to the same
resource. Different URIs do not necessarily refer to different resources but there is
generally a higher computational cost to determine that different URIs refer to the
same resource.

To reduce the risk of a false negative (i.e., an incorrect conclusion that two URIs do
not refer to the same resource) or a false positive (i.e., an incorrect conclusion that
two URIs do refer to the same resource), some specifications describe equivalence
tests in addition to character-by-character comparison. Agents that reach
conclusions based on comparisons that are not licensed by the relevant
specifications take responsibility for any problems that result; see the section on
error handling (§5.3) for more information about responsible behavior when
reaching unlicensed conclusions. Section 6 of [URI (see page 55)] provides more
information about comparing URIs and reducing the risk of false negatives and
positives.

See also the assertion that two URIs identify the same resource (§2.7.2).

2.3.1. URI aliases

Although there are benefits (such as naming flexibility) to URI aliases, there are also
costs. URI aliases are harmful when they divide the Web of related resources. A
corollary of Metcalfe's Principle (the "network effect") is that the value of a given
resource can be measured by the number and value of other resources in its
network neighborhood, that is, the resources that link to it.

The problem with aliases is that if half of the neighborhood points to one URI for a
given resource, and the other half points to a second, different URI for that same
resource, the neighborhood is divided. Not only is the aliased resource undervalued
because of this split, the entire neighborhood of resources loses value because of
the missing second-order relationships that should have existed among the referring
resources by virtue of their references to the aliased resource.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 14 / 58

Architecture of the World Wide Web, Volume One

URI consumers also have a role in ensuring URI consistency. For instance, when
transcribing a URI, agents should not gratuitously percent-encode characters. The
term "character" refers to URI characters as defined in section 2 of [URI (see page
55)]; percent-encoding is discussed in section 2.1 of that specification.

When a URI alias does become common currency, the URI owner (see page 12)
should use protocol techniques such as server-side redirects to relate the two
resources. The community benefits when the URI owner supports redirection of an
aliased URI to the corresponding "official" URI. For more information on redirection,
see section 10.3, Redirection, in [RFC2616 (see page 54)]. See also [CHIPS (see
page 52)] for a discussion of some best practices for server administrators.

2.3.2. Representation reuse

URI aliasing only occurs when more than one URI is used to identify the same
resource. The fact that different resources sometimes have the same representation
does not make the URIs for those resources aliases.

In this story, there are two resources: “a report on the current weather in Oaxaca”
and “a report on the weather in Oaxaca on 1 August 2004”. The managers of the
Oaxaca weather site assign two URIs to these two different resources. On
1 August 2004, the representations for these resources are identical. That fact that
dereferencing two different URIs produces identical representations does not imply
that the two URIs are aliases.

Good practice: Avoiding URI aliases

A URI owner SHOULD NOT associate arbitrarily different URIs with the
same resource.

Good practice: Consistent URI usage

An agent that receives a URI SHOULD refer to the associated resource
using the same URI, character-by-character.

Story

Dirk would like to add a link from his Web site to the Oaxaca weather
site. He uses the URI http://weather.example.com/oaxaca and labels his
link “report on weather in Oaxaca on 1 August 2004”. Nadia points out to
Dirk that he is setting misleading expectations for the URI he has used.
The Oaxaca weather site policy is that the URI in question identifies a
report on the current weather in Oaxaca—on any given day—and not the
weather on 1 August. Of course, on the first of August in 2004, Dirk's link
will be correct, but the rest of the time he will be misleading readers.
Nadia points out to Dirk that the managers of the Oaxaca weather site do
make available a different URI permanently assigned to a resource
reporting on the weather on 1 August 2004.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 15 / 58

Architecture of the World Wide Web, Volume One

2.4. URI Schemes

In the URI "http://weather.example.com/", the "http" that appears before the colon
(":") names a URI scheme. Each URI scheme has a specification that explains the
scheme-specific details of how scheme identifiers are allocated and become
associated with a resource. The URI syntax is thus a federated and extensible
naming system wherein each scheme's specification may further restrict the syntax
and semantics of identifiers within that scheme.

Examples of URIs from various schemes include:

 mailto:joe@example.org
 ftp://example.org/aDirectory/aFile
 news:comp.infosystems.www
 tel:+1-816-555-1212
 ldap://ldap.example.org/c=GB?objectClass?one
 urn:oasis:names:tc:entity:xmlns:xml:catalog

While Web architecture allows the definition of new schemes, introducing a new
scheme is costly. Many aspects of URI processing are scheme-dependent, and a
large amount of deployed software already processes URIs of well-known schemes.
Introducing a new URI scheme requires the development and deployment not only
of client software to handle the scheme, but also of ancillary agents such as
gateways, proxies, and caches. See [RFC2718 (see page 54)] for other
considerations and costs related to URI scheme design.

Because of these costs, if a URI scheme exists that meets the needs of an
application, designers should use it rather than invent one.

Consider our travel scenario (see page 5): should the agent providing information
about the weather in Oaxaca register a new URI scheme "weather" for the
identification of resources related to the weather? They might then publish URIs
such as "weather://travel.example.com/oaxaca". When a software agent
dereferences such a URI, if what really happens is that HTTP GET is invoked to
retrieve a representation of the resource, then an "http" URI would have sufficed.

2.4.1. URI Scheme Registration

The Internet Assigned Numbers Authority (IANA) maintains a registry
[IANASchemes] of mappings between URI scheme names and scheme
specifications. For instance, the IANA registry indicates that the "http" scheme is
defined in [RFC2616]. The process for registering a new URI scheme is defined in
[RFC2717 (see page 54)].

Unregistered URI schemes SHOULD NOT be used for a number of reasons:

Good practice: Reuse URI schemes

A specification SHOULD reuse an existing URI scheme (rather than
create a new one) when it provides the desired properties of identifiers
and their relation to resources.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 16 / 58

Architecture of the World Wide Web, Volume One

 There is no generally accepted way to locate the scheme specification.
 Someone else may be using the scheme for other purposes.
 One should not expect that general-purpose software will do anything useful

with URIs of this scheme beyond URI comparison.

One misguided motivation for registering a new URI scheme is to allow a software
agent to launch a particular application when retrieving a representation. The same
thing can be accomplished at lower expense by dispatching instead on the type of
the representation, thereby allowing use of existing transfer protocols and
implementations.

Even if an agent cannot process representation data in an unknown format, it can at
least retrieve it. The data may contain enough information to allow a user or user
agent to make some use of it. When an agent does not handle a new URI scheme,
it cannot retrieve a representation.

When designing a new data format, the preferred mechanism to promote its
deployment on the Web is the Internet media type (see Representation Types and
Internet Media Types (§3.2) (see page 22)). Media types also provide a means for
building new information applications, as described in future directions for data
formats (§4.6) (see page 45).

2.5. URI Opacity

It is tempting to guess the nature of a resource by inspection of a URI that identifies
it. However, the Web is designed so that agents communicate resource information
state through representations (see page 22), not identifiers. In general, one cannot
determine the type of a resource representation by inspecting a URI for that
resource. For example, the ".html" at the end of "http://example.com/page.html"
provides no guarantee that representations of the identified resource will be served
with the Internet media type "text/html". The publisher is free to allocate identifiers
and define how they are served. The HTTP protocol does not constrain the Internet
media type based on the path component of the URI; the URI owner is free to
configure the server to return a representation using PNG or any other data format.

Resource state may evolve over time. Requiring a URI owner to publish a new URI
for each change in resource state would lead to a significant number of broken
references. For robustness, Web architecture promotes independence between an
identifier and the state of the identified resource.

In practice, a small number of inferences can be made because they are explicitly
licensed by the relevant specifications. Some of these inferences are discussed in
the details of retrieving a representation (§3.1.1) (see page 21).

The example URI used in the travel scenario (see page 5) ("http://
weather.example.com/oaxaca") suggests to a human reader that the identified
resource has something to do with the weather in Oaxaca. A site reporting the

Good practice: URI opacity

Agents making use of URIs SHOULD NOT attempt to infer properties of
the referenced resource.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 17 / 58

Architecture of the World Wide Web, Volume One

weather in Oaxaca could just as easily be identified by the URI "http://
vjc.example.com/315". And the URI "http://weather.example.com/vancouver" might
identify the resource "my photo album."

On the other hand, the URI "mailto:joe@example.com" indicates that the URI refers
to a mailbox. The "mailto" URI scheme specification authorizes agents to infer that
URIs of this form identify Internet mailboxes.

Some URI assignment authorities document and publish their URI assignment
policies. For more information about URI opacity, see TAG issues
metaDataInURI-31 and siteData-36.

2.6. Fragment Identifiers

The fragment identifier component of a URI allows indirect identification of a
secondary resource by reference to a primary resource and additional identifying
information. The secondary resource may be some portion or subset of the primary
resource, some view on representations of the primary resource, or some other
resource defined or described by those representations. The terms "primary
resource" and "secondary resource" are defined in section 3.5 of [URI (see page
55)].

The terms “primary” and “secondary” in this context do not limit the nature of the
resource—they are not classes. In this context, primary and secondary simply
indicate that there is a relationship between the resources for the purposes of one
URI: the URI with a fragment identifier. Any resource can be identified as a
secondary resource. It might also be identified using a URI without a fragment
identifier, and a resource may be identified as a secondary resource via multiple
URIs. The purpose of these terms is to enable discussion of the relationship
between such resources, not to limit the nature of a resource.

The interpretation of fragment identifiers is discussed in the section on media types
and fragment identifier semantics (§3.2.1).

See TAG issue abstractComponentRefs-37, which concerns the use of fragment
identifiers with namespace names to identify abstract components.

2.7. Future Directions for Identifiers

There remain open questions regarding identifiers on the Web.

Story

When browsing the XHTML document that Nadia receives as a
representation of the resource identified by "http://weather.example.com/
oaxaca", she finds that the URI "http://weather.example.com/
oaxaca#weekend" refers to the part of the representation that conveys
information about the weekend outlook. This URI includes the fragment
identifier "weekend" (the string after the "#").

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 18 / 58

http://www.w3.org/2001/tag/issues.html#metadataInURI-31
http://www.w3.org/2001/tag/issues.html#siteData-36
http://www.w3.org/2001/tag/issues.html#abstractComponentRefs-37

Architecture of the World Wide Web, Volume One

2.7.1. Internationalized identifiers

The integration of internationalized identifiers (i.e., composed of characters beyond
those allowed by [URI (see page 55)]) into the Web architecture is an important and
open issue. See TAG issue IRIEverywhere-27 for discussion about work going on in
this area.

2.7.2. Assertion that two URIs identify the same resource

Emerging Semantic Web technologies, including the "Web Ontology Language
(OWL)" [OWL10 (see page 53)], define RDF properties such as sameAs to assert
that two URIs identify the same resource or inverseFunctionalProperty to imply it.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 19 / 58

http://www.w3.org/2001/tag/issues.html#IRIEverywhere-27

Architecture of the World Wide Web, Volume One

3. Interaction

Communication between agents over a network about resources involves URIs,
messages, and data. The Web's protocols (including HTTP, FTP, SOAP, NNTP,
and SMTP) are based on the exchange of messages. A message may include data
as well as metadata about a resource (such as the "Alternates" and "Vary" HTTP
headers), the message data, and the message itself (such as the "Transfer-
encoding" HTTP header). A message may even include metadata about the
message metadata (for message-integrity checks, for instance).

This section describes the architectural principles and constraints regarding
interactions between agents, including such topics as network protocols and
interaction styles, along with interactions between the Web as a system and the
people that make use of it. The fact that the Web is a highly distributed system
affects architectural constraints and assumptions about interactions.

3.1. Using a URI to Access a Resource

Agents may use a URI to access the referenced resource; this is called
dereferencing the URI. Access may take many forms, including retrieving a
representation of the resource (for instance, by using HTTP GET or HEAD), adding
or modifying a representation of the resource (for instance, by using HTTP POST or
PUT, which in some cases may change the actual state of the resource if the
submitted representations are interpreted as instructions to that end), and deleting
some or all representations of the resource (for instance, by using HTTP DELETE,
which in some cases may result in the deletion of the resource itself).

There may be more than one way to access a resource for a given URI; application
context determines which access method an agent uses. For instance, a browser

Story

Nadia follows a hypertext link labeled "satellite image" expecting to
retrieve a satellite photo of the Oaxaca region. The link to the satellite
image is an XHTML link encoded as <a href="http://example.com/
satimage/oaxaca">satellite image. Nadia's browser analyzes the
URI and determines that its scheme (see page 16) is "http". The browser
configuration determines how it locates the identified information, which
might be via a cache of prior retrieval actions, by contacting an
intermediary (such as a proxy server), or by direct access to the server
identified by a portion of the URI. In this example, the browser opens a
network connection to port 80 on the server at "example.com" and sends
a "GET" message as specified by the HTTP protocol, requesting a
representation of the resource.

The server sends a response message to the browser, once again
according to the HTTP protocol. The message consists of several
headers and a JPEG image. The browser reads the headers, learns from
the "Content-Type" field that the Internet media type of the representation
is "image/jpeg", reads the sequence of octets that make up the
representation data, and renders the image.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 20 / 58

Architecture of the World Wide Web, Volume One

might use HTTP GET to retrieve a representation of a resource, whereas a
hypertext link checker might use HTTP HEAD on the same URI simply to establish
whether a representation is available. Some URI schemes set expectations about
available access methods, others (such as the URN scheme [RFC 2141 (see page
53)]) do not. Section 1.2.2 of [URI (see page 55)] discusses the separation of
identification and interaction in more detail. For more information about relationships
between multiple access methods and URI addressability, see the TAG finding
"URIs, Addressability, and the use of HTTP GET and POST".

Although many URI schemes (§2.4) (see page 16) are named after protocols, this
does not imply that use of such a URI will necessarily result in access to the
resource via the named protocol. Even when an agent uses a URI to retrieve a
representation, that access might be through gateways, proxies, caches, and name
resolution services that are independent of the protocol associated with the scheme
name.

Many URI schemes define a default interaction protocol for attempting access to the
identified resource. That interaction protocol is often the basis for allocating
identifiers within that scheme, just as "http" URIs are defined in terms of TCP-based
HTTP servers. However, this does not imply that all interaction with such resources
is limited to the default interaction protocol. For example, information retrieval
systems often make use of proxies to interact with a multitude of URI schemes,
such as HTTP proxies being used to access "ftp" and "wais" resources. Proxies can
also to provide enhanced services, such as annotation proxies that combine normal
information retrieval with additional metadata retrieval to provide a seamless,
multidimensional view of resources using the same protocols and user agents as
the non-annotated Web. Likewise, future protocols may be defined that encompass
our current systems, using entirely different interaction mechanisms, without
changing the existing identifier schemes. See also, principle of orthogonal
specifications (§5.1) (see page 46).

3.1.1. Details of retrieving a representation

Dereferencing a URI generally involves a succession of steps as described in
multiple specifications and implemented by the agent. The following example
illustrates the series of specifications that governs the process when a user agent is
instructed to follow a hypertext link (§4.4) (see page 38) that is part of an SVG
document. In this example, the URI is "http://weather.example.com/oaxaca" and the
application context calls for the user agent to retrieve and render a representation of
the identified resource.

1. Since the URI is part of a hypertext link in an SVG document, the first relevant
specification is the SVG 1.1 Recommendation [SVG11 (see page 54)].
Section 17.1 of this specification imports the link semantics defined in XLink
1.0 [XLink10 (see page 55)]: "The remote resource (the destination for the
link) is defined by a URI specified by the XLink href attribute on the 'a'
element." The SVG specification goes on to state that interpretation of an a
element involves retrieving a representation of a resource, identified by the
href attribute in the XLink namespace: "By activating these links (by clicking
with the mouse, through keyboard input, voice commands, etc.), users may
visit these resources."

2. The XLink 1.0 [XLink10 (see page 55)] specification, which defines the href
attribute in section 5.4, states that "The value of the href attribute must be a

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 21 / 58

http://www.w3.org/2001/tag/doc/whenToUseGet.html
http://www.w3.org/TR/SVG11/linking.html#Links

Architecture of the World Wide Web, Volume One

URI reference as defined in [IETF RFC 2396], or must result in a URI
reference after the escaping procedure described below is applied."

3. The URI specification [URI (see page 55)] states that "Each URI begins with a
scheme name that refers to a specification for assigning identifiers within that
scheme." The URI scheme name in this example is "http".

4. [IANASchemes (see page 52)] states that the "http" scheme is defined by the
HTTP/1.1 specification (RFC 2616 [RFC2616 (see page 54)], section 3.2.2).

5. In this SVG context, the agent constructs an HTTP GET request (per section
9.3 of [RFC2616 (see page 54)]) to retrieve the representation.

6. Section 6 of [RFC2616 (see page 54)] defines how the server constructs a
corresponding response message, including the 'Content-Type' field.

7. Section 1.4 of [RFC2616 (see page 54)] states "HTTP communication usually
takes place over TCP/IP connections." This example addresses neither that
step in the process nor other steps such as Domain Name System (DNS)
resolution.

8. The agent interprets the returned representation according to the data format
specification that corresponds to the representation's Internet Media Type
(§3.2) (see page 22) (the value of the HTTP 'Content-Type') in the relevant
IANA registry [MEDIATYPEREG].

Precisely which representation(s) are retrieved depends on a number of factors,
including:

1. Whether the URI owner makes available any representations at all;
2. Whether the agent making the request has access privileges for those

representations (see the section on linking and access control (§3.5.2) (see
page 30));

3. If the URI owner has provided more than one representation (in different
formats such as HTML, PNG, or RDF; in different languages such as English
and Spanish; or transformed dynamically according to the hardware or
software capabilities of the recipient), the resulting representation may depend
on negotiation between the user agent and server.

4. The time of the request; the world changes over time, so representations of
resources are also likely to change over time.

Assuming that a representation has been successfully retrieved, the expressive
power of the representation's format will affect how precisely the representation
provider communicates resource state. If the representation communicates the
state of the resource inaccurately, this inaccuracy or ambiguity may lead to
confusion among users about what the resource is. If different users reach different
conclusions about what the resource is, they may interpret this as a URI collision
(§2.2.1) (see page 12). Some communities, such as the ones developing the
Semantic Web, seek to provide a framework for accurately communicating the
semantics of a resource in a machine readable way. Machine readable semantics
may alleviate some of the ambiguity associated with natural language descriptions
of resources.

3.2. Representation Types and Internet Media Types

A representation is data that encodes information about resource state.
Representations do not necessarily describe the resource, or portray a likeness of
the resource, or represent the resource in other senses of the word "represent".

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 22 / 58

Architecture of the World Wide Web, Volume One

Representations of a resource may be sent or received using interaction protocols.
These protocols in turn determine the form in which representations are conveyed
on the Web. HTTP, for example, provides for transmission of representations as
octet streams typed using Internet media types [RFC2046 (see page 53)].

Just as it is important to reuse existing URI schemes whenever possible, there are
significant benefits to using media typed octet streams for representations even in
the unusual case where a new URI scheme and associated protocol is to be
defined. For example, if the Oaxaca weather were conveyed to Nadia's browser
using a protocol other than HTTP, then software to render formats such as text/
xhmtl+xml and image/png would still be usable if the new protocol supported
transmission of those types. This is an example of the principle of orthogonal
specifications (§5.1) (see page 46).

The Internet media type mechanism does have some limitations. For instance,
media type strings do not support versioning (§4.2.1) (see page 33) or other
parameters. See TAG issues uriMediaType-9 and mediaTypeManagement-45
which concern aspects of the media type mechanism.

3.2.1. Representation types and fragment identifier semantics

The Internet Media Type defines the syntax and semantics of the fragment identifier
(introduced in Fragment Identifiers (§2.6) (see page 18)), if any, that may be used in
conjunction with a representation.

Note that the HTML implementation in Emma's browser did not need to understand
the syntax or semantics of the SVG fragment (nor does the SVG implementation
have to understand HTML, WebCGM, RDF ... fragment syntax or semantics; it
merely had to recognize the # delimiter from the URI syntax [URI] and remove the
fragment when accessing the resource). This orthogonality (§5.1) (see page 46) is

Good practice: Reuse representation formats

New protocols created for the Web SHOULD transmit representations as
octet streams typed by Internet media types.

Story

In one of his XHTML pages, Dirk creates a hypertext link to an image that
Nadia has published on the Web. He creates a hypertext link with Nadia's hat.
Emma views Dirk's XHTML page in her Web browser and follows the link.
The HTML implementation in her browser removes the fragment from the
URI and requests the image "http://www.example.com/images/nadia".
Nadia serves an SVG representation of the image (with Internet media
type "image/svg+xml"). Emma's Web browser starts up an SVG
implementation to view the image. It passes it the original URI including
the fragment, "http://www.example.com/images/nadia#hat" to this
implementation, causing a view of the hat to be displayed rather than the
complete image.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 23 / 58

http://www.w3.org/2001/tag/issues.html#uriMediaType-9
http://www.w3.org/2001/tag/issues.html#mediaTypeManagement-45

Architecture of the World Wide Web, Volume One

an important feature of Web architecture; it is what enabled Emma's browser to
provide a useful service without requiring an upgrade.

The semantics of a fragment identifier are defined by the set of representations that
might result from a retrieval action on the primary resource. The fragment's format
and resolution are therefore dependent on the type of a potentially retrieved
representation, even though such a retrieval is only performed if the URI is
dereferenced. If no such representation exists, then the semantics of the fragment
are considered unknown and, effectively, unconstrained. Fragment identifier
semantics are orthogonal to URI schemes and thus cannot be redefined by URI
scheme specifications.

Interpretation of the fragment identifier is performed solely by the agent that
dereferences a URI; the fragment identifier is not passed to other systems during
the process of retrieval. This means that some intermediaries in Web architecture
(such as proxies) have no interaction with fragment identifiers and that redirection
(in HTTP [RFC2616], for example) does not account for fragments.

3.2.2. Fragment identifiers and content negotiation

Content negotiation refers to the practice of making available multiple
representations via the same URI. Negotiation between the requesting agent and
the server determines which representation is served (usually with the goal of
serving the "best" representation a receiving agent can process). HTTP is an
example of a protocol that enables representation providers to use content
negotiation.

Individual data formats may define their own rules for use of the fragment identifier
syntax for specifying different types of subsets, views, or external references that
are identifiable as secondary resources by that media type. Therefore,
representation providers must manage content negotiation carefully when used with
a URI that contains a fragment identifier. Consider an example where the owner of
the URI "http://weather.example.com/oaxaca/map#zicatela" uses content
negotiation to serve two representations of the identified resource. Three situations
can arise:

1. The interpretation of "zicatela" is defined consistently by both data format
specifications. The representation provider decides when definitions of
fragment identifier semantics are are sufficiently consistent.

2. The interpretation of "zicatela" is defined inconsistently by the data format
specifications.

3. The interpretation of "zicatela" is defined in one data format specification but
not the other.

The first situation—consistent semantics—poses no problem.

The second case is a server management error: representation providers must not
use content negotiation to serve representation formats that have inconsistent
fragment identifier semantics. This situation also leads to URI collision (§2.2.1) (see
page 12).

The third case is not a server management error. It is a means by which the Web
can grow. Because the Web is a distributed system in which formats and agents are

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 24 / 58

Architecture of the World Wide Web, Volume One

deployed in a non-uniform manner, Web architecture does not constrain authors to
only use "lowest common denominator" formats. Content authors may take
advantage of new data formats while still ensuring reasonable backward-
compatibility for agents that do not yet implement them.

In case three, behavior by the receiving agent should vary depending on whether
the negotiated format defines fragment identifier semantics. When a received data
format does not define fragment identifier semantics, the agent should not perform
silent error recovery (see page 48) unless the user has given consent; see [CUAP
(see page 52)] for additional suggested agent behavior in this case.

See related TAG issue RDFinXHTML-35.

3.3. Inconsistencies between Representation Data and Metadata

Successful communication between two parties depends on a reasonably shared
understanding of the semantics of exchanged messages, both data and metadata.
At times, there may be inconsistencies between a message sender's data and
metadata. Examples, observed in practice, of inconsistencies between
representation data and metadata include:

 The actual character encoding of a representation (e.g., "iso-8859-1",
specified by the encoding attribute in an XML declaration) is inconsistent with
the charset parameter in the representation metadata (e.g., "utf-8", specified
by the 'Content-Type' field in an HTTP header).

 The namespace (§4.5.3) (see page 40) of the root element of XML
representation data (e.g., as specified by the "xmlns" attribute) is inconsistent
with the value of the 'Content-Type' field in an HTTP header.

On the other hand, there is no inconsistency in serving HTML content with the
media type "text/plain", for example, as this combination is licensed by
specifications.

Receiving agents should detect protocol inconsistencies and perform proper error
recovery.

Thus, for example, if the parties responsible for "weather.example.com" mistakenly
label the satellite photo of Oaxaca as "image/gif" instead of "image/jpeg", and if
Nadia's browser detects a problem, Nadia's browser must not ignore the problem
(e.g., by simply rendering the JPEG image) without Nadia's consent. Nadia's
browser can notify Nadia of the problem or notify Nadia and take corrective action.

Furthermore, representation providers can help reduce the risk of inconsistencies
through careful assignment of representation metadata (especially that which
applies across representations). The section on media types for XML (§4.5.7)
presents an example of reducing the risk of error by providing no metadata about
character encoding when serving XML.

Constraint: Data-metadata inconsistency

Agents MUST NOT ignore message metadata without the consent of the
user.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 25 / 58

http://www.w3.org/2001/tag/issues.html#RDFinXHTML-35

Architecture of the World Wide Web, Volume One

The accuracy of metadata relies on the server administrators, the authors of
representations, and the software that they use. Practically, the capabilities of the
tools and the social relationships may be the limiting factors.

The accuracy of these and other metadata fields is just as important for dynamic
Web resources, where a little bit of thought and programming can often ensure
correct metadata for a huge number of resources.

Often there is a separation of control between the users who create representations
of resources and the server managers who maintain the Web site software. Given
that it is generally the Web site software that provides the metadata associated with
a resource, it follows that coordination between the server managers and content
creators is required.

In particular, content creators need to be able to control the content type (for
extensibility) and the character encoding (for proper internationalization).

The TAG finding "Authoritative Metadata" discusses in more detail how to handle
data/metadata inconsistency and how server configuration can be used to avoid it.

3.4. Safe Interactions

Nadia's retrieval of weather information (an example of a read-only query or lookup)
qualifies as a "safe" interaction; a safe interaction is one where the agent does not
incur any obligation beyond the interaction. An agent may incur an obligation
through other means (such as by signing a contract). If an agent does not have an
obligation before a safe interaction, it does not have that obligation afterwards.

Other Web interactions resemble orders more than queries. These unsafe
interactions may cause a change to the state of a resource and the user may be
held responsible for the consequences of these interactions. Unsafe interactions
include subscribing to a newsletter, posting to a list, or modifying a database. Note:
In this context, the word "unsafe" does not necessarily mean "dangerous"; the term
"safe" is used in section 9.1.1 of [RFC2616 (see page 54)] and "unsafe" is the
natural opposite.

Good practice: Metadata association

Server managers SHOULD allow representation creators to control the
metadata associated with their representations.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 26 / 58

http://www.w3.org/2001/tag/doc/mime-respect.html

Architecture of the World Wide Web, Volume One

Safe interactions are important because these are interactions where users can
browse with confidence and where agents (including search engines and browsers
that pre-cache data for the user) can follow hypertext links safely. Users (or agents
acting on their behalf) do not commit themselves to anything by querying a resource
or following a hypertext link.

For instance, it is incorrect to publish a URI that, when followed as part of a
hypertext link, subscribes a user to a mailing list. Remember that search engines
may follow such hypertext links.

The fact that HTTP GET, the access method most often used when following a
hypertext link, is safe does not imply that all safe interactions must be done through
HTTP GET. At times, there may be good reasons (such as confidentiality
requirements or practical limits on URI length) to conduct an otherwise safe
operation using a mechanism generally reserved for unsafe operations (e.g., HTTP
POST).

For more information about safe and unsafe operations using HTTP GET and
POST, and handling security concerns around the use of HTTP GET, see the TAG
finding "URIs, Addressability, and the use of HTTP GET and POST".

Story

Nadia decides to book a vacation to Oaxaca at "booking.example.com."
She enters data into a series of online forms and is ultimately asked for
credit card information to purchase the airline tickets. She provides this
information in another form. When she presses the "Purchase" button,
her browser opens another network connection to the server at
"booking.example.com" and sends a message composed of form data
using the POST method. This is an unsafe interaction (see page 26);
Nadia wishes to change the state of the system by exchanging money for
airline tickets.

The server reads the POST request, and after performing the booking
transaction returns a message to Nadia's browser that contains a
representation of the results of Nadia's request. The representation data
is in XHTML so that it can be saved or printed out for Nadia's records.

Note that neither the data transmitted with the POST nor the data
received in the response necessarily correspond to any resource
identified by a URI.

Principle: Safe retrieval

Agents do not incur obligations by retrieving a representation.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 27 / 58

http://www.w3.org/2001/tag/doc/whenToUseGet.html

Architecture of the World Wide Web, Volume One

3.4.1. Unsafe interactions and accountability

Transaction requests and results are valuable resources, and like all valuable
resources, it is useful to be able to refer to them with a persistent URI (§3.5.1).
However, in practice, Nadia cannot bookmark her commitment to pay (expressed
via the POST request) or the airline company's acknowledgment and commitment
to provide her with a flight (expressed via the response to the POST).

There are ways to provide persistent URIs for transaction requests and their results.
For transaction requests, user agents can provide an interface for managing
transactions where the user agent has incurred an obligation on behalf of the user.
For transaction results, HTTP allows representation providers to associate a URI
with the results of an HTTP POST request using the "Content-Location" header
(described in section 14.14 of [RFC2616 (see page 54)]).

3.5. Representation Management

A URI owner may supply zero or more authoritative representations of the resource
identified by that URI. There is a benefit to the community in providing
representations.

Story

Nadia pays for her airline tickets online (through a POST interaction as
described above). She receives a Web page with confirmation
information and wishes to bookmark it so that she can refer to it when
she calculates her expenses. Although Nadia can print out the results, or
save them to a file, she would also like to bookmark them.

Story

Since Nadia finds the Oaxaca weather site useful, she emails a review to
her friend Dirk recommending that he check out 'http://
weather.example.com/oaxaca'. Dirk clicks on the resulting hypertext link
in the email he receives and is frustrated by a 404 (not found). Dirk tries
again the next day and receives a representation with "news" that is two-
weeks old. He tries one more time the next day only to receive a
representation that claims that the weather in Oaxaca is sunny, even
though his friends in Oaxaca tell him by phone that in fact it is raining.
Dirk and Nadia conclude that the URI owners are unreliable or
unpredictable. Although the URI owner has chosen the Web as a
communication medium, the owner has lost two customers due to
ineffective representation management.

Good practice: Available representation

A URI owner SHOULD provide representations of the resource it
identifies

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 28 / 58

Architecture of the World Wide Web, Volume One

For example, owners of XML namespace URIs should use them to identify a
namespace document (§4.5.4).

Just because representations are available does not mean that it is always
desirable to retrieve them. In fact, in some cases the opposite is true.

Dereferencing a URI has a (potentially significant) cost in computing and bandwidth
resources, may have security implications, and may impose significant latency on
the dereferencing application. Dereferencing URIs should be avoided except when
necessary.

The following sections discuss some aspects of representation management,
including promoting URI persistence (§3.5.1), managing access to resources
(§3.5.2) (see page 30), and supporting navigation (§3.5.3) (see page 30).

3.5.1. URI persistence

As is the case with many human interactions, confidence in interactions via the Web
depends on stability and predictability. For an information resource, persistence
depends on the consistency of representations. The representation provider
decides when representations are sufficiently consistent (although that
determination generally takes user expectations into account).

Although persistence in this case is observable as a result of representation
retrieval, the term URI persistence is used to describe the desirable property that,
once associated with a resource, a URI should continue indefinitely to refer to that
resource.

URI persistence is a matter of policy and commitment on the part of the URI owner
(see page 12). The choice of a particular URI scheme provides no guarantee that
those URIs will be persistent or that they will not be persistent.

HTTP [RFC2616 (see page 54)] has been designed to help manage URI
persistence. For example, HTTP redirection (using the 3xx response codes) permits
servers to tell an agent that further action needs to be taken by the agent in order to
fulfill the request (for example, a new URI is associated with the resource).

In addition, content negotiation (see page 24) also promotes consistency, as a site
manager is not required to define new URIs when adding support for a new format
specification. Protocols that do not support content negotiation (such as FTP)

Principle: Reference does not imply dereference

An application developer or specification author SHOULD NOT require
networked retrieval of representations each time they are referenced.

Good practice: Consistent representation

A URI owner SHOULD provide representations of the identified resource
consistently and predictably.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 29 / 58

Architecture of the World Wide Web, Volume One

require a new identifier when a new data format is introduced. Improper use of
content negotiation can lead to inconsistent representations.

For more discussion about URI persistence, see [Cool (see page 52)].

3.5.2. Linking and access control

It is reasonable to limit access to a resource (for commercial or security reasons, for
example), but merely identifying the resource is like referring to a book by title. In
exceptional circumstances, people may have agreed to keep titles or URIs
confidential (for example, a book author and a publisher may agree to keep the URI
of page containing additional material secret until after the book is published),
otherwise they are free to exchange them.

As an analogy: The owners of a building might have a policy that the public may
only enter the building via the main front door, and only during business hours.
People who work in the building and who make deliveries to it might use other doors
as appropriate. Such a policy would be enforced by a combination of security
personnel and mechanical devices such as locks and pass-cards. One would not
enforce this policy by hiding some of the building entrances, nor by requesting
legislation requiring the use of the front door and forbidding anyone to reveal the
fact that there are other doors to the building.

The Web provides several mechanisms to control access to resources; these
mechanisms do not rely on hiding or suppressing URIs for those resources. For
more information, see the TAG finding "'Deep Linking' in the World Wide Web".

3.5.3. Supporting Navigation

It is a strength of Web Architecture that links can be made and shared; a user who
has found an interesting part of the Web can share this experience just by
republishing a URI.

Story

Nadia sends to Dirk the URI of the current article she is reading. With his
browser, Dirk follows the hypertext link and is asked to enter his
subscriber username and password. Since Dirk is also a subscriber to
services provided by "weather.example.com," he can access the same
information as Nadia. Thus, the authority for "weather.example.com" can
limit access to authorized parties and still provide the benefits of URIs.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 30 / 58

http://www.w3.org/2001/tag/doc/deeplinking.html

Architecture of the World Wide Web, Volume One

For resources that are generated on demand, machine generation of URIs is
common. For resources that might usefully be bookmarked for later perusal, or
shared with others, server managers should avoid needlessly restricting the
reusability of such URIs. If the intention is to restrict information to a particular user,
as might be the case in a home banking application for example, designers should
use appropriate access control (§3.5.2) (see page 30) mechanisms.

Interactions conducted with HTTP POST (where HTTP GET could have been used)
also limit navigation possibilities. The user cannot create a bookmark or share the
URI because HTTP POST transactions do not typically result in a different URI as
the user interacts with the site.

3.6. Future Directions for Interaction

There remain open questions regarding Web interactions. The TAG expects future
versions of this document to address in more detail the relationship between the
architecture described herein, Web Services, peer-to-peer systems, instant
messaging systems (such as [RFC3920 (see page 54)]), streaming audio (such as
RTSP [RFC2326]), and voice-over-IP (such as SIP [RFC3261 (see page 54)]).

Story

Nadia and Dirk want to visit the Museum of Weather Forecasting in
Oaxaca. Nadia goes to "http://maps.example.com", locates the museum,
and mails the URI "http://maps.example.com/oaxaca?
lat=17.065;lon=-96.716;scale=6" to Dirk. Dirk goes to "http://
mymaps.example.com", locates the museum, and mails the URI "http://
mymaps.example.com/geo?sessionID=765345;userID=Dirk" to Nadia.
Dirk reads Nadia's email and is able to follow the link to the map. Nadia
reads Dirk's email, follows the link, and receives an error message 'No
such session/user'. Nadia has to start again from "http://
mymaps.example.com" and find the museum location once more.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 31 / 58

http://www.w3.org/2002/ws/

Architecture of the World Wide Web, Volume One

4. Data Formats

A data format specification (for example, for XHTML, RDF/XML, SMIL, XLink, CSS,
and PNG) embodies an agreement on the correct interpretation of representation
data. The first data format used on the Web was HTML. Since then, data formats
have grown in number. Web architecture does not constrain which data formats
content providers can use. This flexibility is important because there is constant
evolution in applications, resulting in new data formats and refinements of existing
formats. Although Web architecture allows for the deployment of new data formats,
the creation and deployment of new formats (and agents able to handle them) is
expensive. Thus, before inventing a new data format (or "meta" format such as
XML), designers should carefully consider re-using one that is already available.

For a data format to be usefully interoperable between two parties, the parties must
agree (to a reasonable extent) about its syntax and semantics. Shared
understanding of a data format promotes interoperability but does not imply
constraints on usage; for instance, a sender of data cannot count on being able to
constrain the behavior of a data receiver.

Below we describe some characteristics of a data format that facilitate integration
into Web architecture. This document does not address generally beneficial
characteristics of a specification such as readability, simplicity, attention to
programmer goals, attention to user needs, accessibility, nor internationalization.
The section on architectural specifications (§7.1) includes references to additional
format specification guidelines.

4.1. Binary and Textual Data Formats

Binary data formats are those in which portions of the data are encoded for direct
use by computer processors, for example 32 bit little-endian two's-complement and
64 bit IEEE double-precision floating-point. The portions of data so represented
include numeric values, pointers, and compressed data of all sorts.

A textual data format is one in which the data is specified in a defined encoding as a
sequence of characters. HTML, Internet e-mail, and all XML-based formats (§4.5)
(see page 39) are textual. Increasingly, internationalized textual data formats refer
to the Unicode repertoire [UNICODE (see page 54)] for character definitions.

If a data format is textual, as defined in this section, that does not imply that it
should be served with a media type beginning with "text/". Although XML-based
formats are textual, many XML-based formats do not consist primarily of phrases in
natural language. See the section on media types for XML (§4.5.7) (see page 44)
for issues that arise when "text/" is used in conjunction with an XML-based format.

In principle, all data can be represented using textual formats. In practice, some
types of content (e.g., audio and video) are generally represented using binary
formats.

The trade-offs between binary and textual data formats are complex and
application-dependent. Binary formats can be substantially more compact,
particularly for complex pointer-rich data structures. Also, they can be consumed
more rapidly by agents in those cases where they can be loaded into memory and
used with little or no conversion. Note, however, that such cases are relatively

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 32 / 58

Architecture of the World Wide Web, Volume One

uncommon as such direct use may open the door to security issues that can only
practically be addressed by examining every aspect of the data structure in detail.

Textual formats are usually more portable and interoperable. Textual formats also
have the considerable advantage that they can be directly read by human beings
(and understood, given sufficient documentation). This can simplify the tasks of
creating and maintaining software, and allow the direct intervention of humans in
the processing chain without recourse to tools more complex than the ubiquitous
text editor. Finally, it simplifies the necessary human task of learning about new
data formats; this is called the "view source" effect.

It is important to emphasize that intuition as to such matters as data size and
processing speed is not a reliable guide in data format design; quantitative studies
are essential to a correct understanding of the trade-offs. Therefore, designers of a
data format specification should make a considered choice between binary and
textual format design.

See TAG issue binaryXML-30.

4.2. Versioning and Extensibility

In a perfect world, language designers would invent languages that perfectly met
the requirements presented to them, the requirements would be a perfect model of
the world, they would never change over time, and all implementations would be
perfectly interoperable because the specifications would have no variability.

In the real world, language designers imperfectly address the requirements as they
interpret them, the requirements inaccurately model the world, conflicting
requirements are presented, and they change over time. As a result, designers
negotiate with users, make compromises, and often introduce extensibility
mechanisms so that it is possible to work around problems in the short term. In the
long term, they produce multiple versions of their languages, as the problem, and
their understanding of it, evolve. The resulting variability in specifications,
languages, and implementations introduces interoperability costs.

Extensibility and versioning are strategies to help manage the natural evolution of
information on the Web and technologies used to represent that information. For
more information about how these strategies introduce variability and how that
variability impacts interoperability, see Variability in Specifications.

See TAG issue XMLVersioning-41, which concerns good practices for designing
extensible XML languages and for handling versioning. See also "Web Architecture:
Extensible Languages" [EXTLANG (see page 56)].

4.2.1. Versioning

There is typically a (long) transition period during which multiple versions of a
format, protocol, or agent are simultaneously in use.

Good practice: Version information

A data format specification SHOULD provide for version information.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 33 / 58

http://www.w3.org/2001/tag/issues.html#binaryXML-30
http://www.w3.org/2001/tag/issues.html#XMLVersioning-41

Architecture of the World Wide Web, Volume One

4.2.2. Versioning and XML namespace policy

Dirk and Nadia have chosen a particular namespace change policy that allows them
to avoid changing the namespace name whenever they make changes that do not
affect conformance of deployed content and software. They might have chosen a
different policy, for example that any new element or attribute has to belong to a
namespace other than the original one. Whatever the chosen policy, it should set
clear expectations for users of the format.

In general, changing the namespace name of an element completely changes the
element name. If "a" and "b" are bound to two different URIs, a:element and
b:element are as distinct as a:eieio and a:xyzzy. Practically speaking, this means
that deployed applications will have to be upgraded in order to recognize the new
language; the cost of this upgrade may be very high.

It follows that there are significant tradeoffs to be considered when deciding on a
namespace change policy. If a vocabulary has no extensibility points (that is, if it
does not allow elements or attributes from foreign namespaces or have a
mechanism for dealing with unrecognized names from the same namespace), it
may be absolutely necessary to change the namespace name. Languages that
allow some form of extensibility without requiring a change to the namespace name
are more likely to evolve gracefully.

As an example of a change policy designed to reflect the variable stability of a
namespace, consider the W3C namespace policy for documents on the W3C
Recommendation track. The policy sets expectations that the Working Group
responsible for the namespace may modify it in any way until a certain point in the
process ("Candidate Recommendation") at which point W3C constrains the set of
possible changes to the namespace in order to promote stable implementations.

Story

Nadia and Dirk are designing an XML data format to encode data about
the film industry. They provide for extensibility by using XML namespaces
and creating a schema that allows the inclusion, in certain places, of
elements from any namespace. When they revise their format, Nadia
proposes a new optional lang attribute on the film element. Dirk feels
that such a change requires them to assign a new namespace name,
which might require changes to deployed software. Nadia explains to Dirk
that their choice of extensibility strategy in conjunction with their
namespace policy allows certain changes that do not affect conformance
of existing content and software, and thus no change to the namespace
identifier is required. They chose this policy to help them meet their goals
of reducing the cost of change.

Good practice: Namespace policy

An XML format specification SHOULD include information about change
policies for XML namespaces.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 34 / 58

http://www.w3.org/1999/10/nsuri

Architecture of the World Wide Web, Volume One

Note that since namespace names are URIs, the owner of a namespace URI has
the authority to decide the namespace change policy.

4.2.3. Extensibility

Requirements change over time. Successful technologies are adopted and adapted
by new users. Designers can facilitate the transition process by making careful
choices about extensibility during the design of a language or protocol specification.

In making these choices, the designers must weigh the trade-offs between
extensibility, simplicity, and variability. A language without extensibility mechanisms
may be simpler and less variable, improving initial interoperability. However, it's
likely that changes to that language will be more difficult, possibly more complex
and more variable, than if the initial design had provided such mechanisms. This
may decrease interoperability over the long term.

Extensibility introduces variability which has an impact on interoperability. However,
languages that have no extensibility mechanisms may be extended in ad hoc ways
that impact interoperability as well. One key criterion of the mechanisms provided
by language designers is that they allow the extended languages to remain in
conformance with the original specification, increasing the likelihood of
interoperability.

Application needs determine the most appropriate extension strategy for a
specification. For example, applications designed to operate in closed environments
may allow specification designers to define a versioning strategy that would be
impractical at the scale of the Web.

Two strategies have emerged as being particularly useful:

1. "Must ignore": The agent ignores any content it does not recognize.
2. "Must understand": The agent treats unrecognized markup as an error

condition.

Good practice: Extensibility mechanisms

A specification SHOULD provide mechanisms that allow any party to
create extensions.

Good practice: Extensibility conformance

Extensibility MUST NOT interfere with conformance to the original
specification.

Good practice: Unknown extensions

A specification SHOULD specify agent behavior in the face of
unrecognized extensions.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 35 / 58

Architecture of the World Wide Web, Volume One

A powerful design approach is for the language to allow either form of extension,
but to distinguish explicitly between them in the syntax.

Additional strategies include prompting the user for more input and automatically
retrieving data from available hypertext links. More complex strategies are also
possible, including mixing strategies. For instance, a language can include
mechanisms for overriding standard behavior. Thus, a data format can specify
"must ignore" semantics but also allow for extensions that override that semantics in
light of application needs (for instance, with "must understand" semantics for a
particular extension).

Extensibility is not free. Providing hooks for extensibility is one of many
requirements to be factored into the costs of language design. Experience suggests
that the long term benefits of a well-designed extensibility mechanism generally
outweigh the costs.

See “D.3 Extensibility and Extensions” in [QA (see page 56)].

4.2.4. Composition of data formats

Many modern data format include mechanisms for composition. For example:

 It is possible to embed text comments in some image formats, such as JPEG/
JFIF. Although these comments are embedded in the containing data, they
are not intended to affect the display of the image.

 There are container formats such as SOAP which fully expect content from
multiple namespaces but which provide an overall semantic relationship of
message envelope and payload.

 The semantics of combining RDF documents containing multiple vocabularies
are well-defined.

In principle, these relationships can be mixed and nested arbitrarily. A SOAP
message, for example, can contain an SVG image that contains an RDF comment
which refers to a vocabulary of terms for describing the image.

Note however, that for general XML there is no semantic model that defines the
interactions within XML documents with elements and/or attributes from a variety of
namespaces. Each application must define how namespaces interact and what
effect the namespace of an element has on the element's ancestors, siblings, and
descendants.

See TAG issues mixedUIXMLNamespace-33 (concerning the meaning of a
document composed of content in multiple namespaces), xmlFunctions-34
(concerning one approach for managing XML transformation and composability),
and RDFinXHTML-35 (concerning the interpretation of RDF when embedded in an
XHTML document).

4.3. Separation of Content, Presentation, and Interaction

The Web is a heterogeneous environment where a wide variety of agents provide
access to content to users with a wide variety of capabilities. It is good practice for
authors to create content that can reach the widest possible audience, including
users with graphical desktop computers, hand-held devices and mobile phones,

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 36 / 58

http://www.w3.org/TR/qaframe-spec/#extensions
http://www.w3.org/2001/tag/issues.html#mixedUIXMLNamespace-33
http://www.w3.org/2001/tag/issues.html#xmlFunctions-34
http://www.w3.org/2001/tag/issues.html#RDFinXHTML-35

Architecture of the World Wide Web, Volume One

users with disabilities who may require speech synthesizers, and devices not yet
imagined. Furthermore, authors cannot predict in some cases how an agent will
display or process their content. Experience shows that the separation of content,
presentation, and interaction promotes the reuse and device-independence of
content; this follows from the principle of orthogonal specifications (§5.1) (see page
46).

This separation also facilitates reuse of authored source content across multiple
delivery contexts. Sometimes, functional user experiences suited to any delivery
context can be generated by using an adaptation process applied to a
representation that does not depend on the access mechanism. For more
information about principles of device-independence, see [DIPRINCIPLES (see
page 56)].

Note that when content, presentation, and interaction are separated by design,
agents need to recombine them. There is a recombination spectrum, with "client
does all" at one end and "server does all" at the other.

There are advantages to each approach. For instance when a client (such as a
mobile phone) communicates device capabilities to the server (for example, using
CC/PP), the server can tailor the delivered content to fit that client. The server can,
for example, enable faster downloads by adjusting links to refer to lower resolution
images, smaller video or no video at all. Similarly, if the content has been authored
with multiple branches, the server can remove unused branches before delivery. In
addition, by tailoring the content to match the characteristics of a target client, the
server can help reduce client side computation. However, specializing content in
this manner reduces caching efficiency.

On the other hand, designing content that that can be recombined on the client also
tends to make that content applicable to a wider range of devices. This design also
improves caching efficiency and offers users more presentation options. Media-
dependent style sheets can be used to tailor the content on the client side to
particular groups of target devices. For textual content with a regular and repeating
structure, the combined size of the text content plus the style sheet is typically less
than that of fully recombined content; the savings improve further if the style sheet
is reused by other pages.

In practice a combination of both approaches is often used. The design decision
about where on this spectrum an application should be placed depends on the
power on the client, the power and the load on the server, and the bandwidth of the
medium that connects them. If the number of possible clients is unbounded, the
application will scale better if more computation is pushed to the client.

Of course, it may not be desirable to reach the widest possible audience. Designers
should consider appropriate technologies, such as encryption and access control
(§3.5.2), for limiting the audience.

Good practice: Separation of content, presentation, interaction

A specification SHOULD allow authors to separate content from both
presentation and interaction concerns.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 37 / 58

Architecture of the World Wide Web, Volume One

Some data formats are designed to describe presentation (including SVG and XSL
Formatting Objects). Data formats such as these demonstrate that one can only
separate content from presentation (or interaction) so far; at some point it becomes
necessary to talk about presentation. Per the principle of orthogonal specifications
(§5.1) (see page 46) these data formats should only address presentation issues.

See the TAG issues formattingProperties-19 (concerning interoperability in the case
of formatting properties and names) and contentPresentation-26 (concerning the
separation of semantic and presentational markup).

4.4. Hypertext

A defining characteristic of the Web is that it allows embedded references to other
resources via URIs. The simplicity of creating hypertext links using absolute URIs
() and relative URI references (and) is partly (perhaps largely) responsible for
the success of the hypertext Web as we know it today.

When a representation of one resource contains a reference to another resource,
expressed with a URI identifying that other resource, this constitutes a link between
the two resources. Additional metadata may also form part of the link (see [XLink10
(see page 55)], for example). Note: In this document, the term "link" generally
means "relationship", not "physical connection".

Formats that allow content authors to use URIs instead of local identifiers promote
the network effect: the value of these formats grows with the size of the deployed
Web.

What agents do with a hypertext link is not constrained by Web architecture and
may depend on application context. Users of hypertext links expect to be able to
navigate among representations by following links.

Good practice: Link identification

A specification SHOULD provide ways to identify links to other resources,
including to secondary resources (via fragment identifiers).

Good practice: Web linking

A specification SHOULD allow Web-wide linking, not just internal
document linking.

Good practice: Generic URIs

A specification SHOULD allow content authors to use URIs without
constraining them to a limited set of URI schemes.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 38 / 58

http://www.w3.org/2001/tag/issues.html#formattingProperties-19
http://www.w3.org/2001/tag/issues.html#contentPresentation-26

Architecture of the World Wide Web, Volume One

Data formats that do not allow content authors to create hypertext links lead to the
creation of "terminal nodes" on the Web.

4.4.1. URI references

Links are commonly expressed using URI references (defined in section 4.2 of
[URI (see page 55)]), which may be combined with a base URI to yield a usable
URI. Section 5.1 of [URI (see page 55)] explains different ways to establish a base
URI for a resource and establishes a precedence among them. For instance, the
base URI may be a URI for the resource, or specified in a representation (see the
base elements provided by HTML and XML, and the HTTP 'Content-Location'
header). See also the section on links in XML (§4.5.2).

Agents resolve a URI reference before using the resulting URI to interact with
another agent. URI references help in content management by allowing content
authors to design a representation locally, i.e., without concern for which global
identifier may later be used to refer to the associated resource.

4.5. XML-Based Data Formats

Many data formats are XML-based, that is to say they conform to the syntax rules
defined in the XML specification [XML10 (see page 55)] or [XML11 (see page 55)].
This section discusses issues that are specific to such formats. Anyone seeking
guidance in this area is urged to consult the "Guidelines For the Use of XML in IETF
Protocols" [IETFXML] (see page 52), which contains a thorough discussion of the
considerations that govern whether or not XML ought to be used, as well as specific
guidelines on how it ought to be used. While it is directed at Internet applications
with specific reference to protocols, the discussion is generally applicable to Web
scenarios as well.

The discussion here should be seen as ancillary to the content of [IETFXML] (see
page 52). Refer also to "XML Accessibility Guidelines" [XAG] (see page 57) for help
designing XML formats that lower barriers to Web accessibility for people with
disabilities.

4.5.1. When to use an XML-based format

XML defines textual data formats that are naturally suited to describing data objects
which are hierarchical and processed in a chosen sequence. It is widely, but not
universally, applicable for data formats; an audio or video format, for example, is
unlikely to be well suited to expression in XML. Design constraints that would
suggest the use of XML include:

1. Requirement for a hierarchical structure.
2. Need for a wide range of tools on a variety of platforms.
3. Need for data that can outlive the applications that currently process it.

Good practice: Hypertext links

A data format SHOULD incorporate hypertext links if hypertext is the
expected user interface paradigm.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 39 / 58

Architecture of the World Wide Web, Volume One

4. Ability to support internationalization in a self-describing way that makes
confusion over coding options unlikely.

5. Early detection of encoding errors with no requirement to "work around" such
errors.

6. A high proportion of human-readable textual content.
7. Potential composition of the data format with other XML-encoded formats.
8. Desire for data easily parsed by both humans and machines.
9. Desire for vocabularies that can be invented in a distributed manner and

combined flexibly.

4.5.2. Links in XML

Sophisticated linking mechanisms have been invented for XML formats. XPointer
allows links to address content that does not have an explicit, named anchor. [XLink
(see page 55)] is an appropriate specification for representing links in hypertext
(§4.4) (see page 38) XML applications. XLink allows links to have multiple ends and
to be expressed either inline or in "link bases" stored external to any or all of the
resources identified by the links it contains.

Designers of XML-based formats may consider using XLink and, for defining
fragment identifier syntax, using the XPointer framework and XPointer element()
Schemes.

XLink is not the only linking design that has been proposed for XML, nor is it
universally accepted as a good design. See also TAG issue xlinkScope-23.

4.5.3. XML namespaces

The purpose of an XML namespace (defined in [XMLNS (see page 55)]) is to allow
the deployment of XML vocabularies (in which element and attribute names are
defined) in a global environment and to reduce the risk of name collisions in a given
document when vocabularies are combined. For example, the MathML and SVG
specifications both define the set element. Although XML data from different
formats such as MathML and SVG can be combined in a single document, in this
case there could be ambiguity about which set element was intended. XML
namespaces reduce the risk of name collisions by taking advantage of existing
systems for allocating globally scoped names: the URI system (see also the section
on URI allocation (§2.2.2)). When using XML namespaces, each local name in an
XML vocabulary is paired with a URI (called the namespace URI) to distinguish the
local name from local names in other vocabularies.

The use of URIs confers additional benefits. First, each URI/local name pair can be
mapped to another URI, grounding the terms of the vocabulary in the Web. These
terms may be important resources and thus it is appropriate to be able to associate
URIs with them.

[RDFXML (see page 53)] uses simple concatenation of the namespace URI and the
local name to create a URI for the identified term. Other mappings are likely to be
more suitable for hierarchical namespaces; see the related TAG issue
abstractComponentRefs-37.

Designers of XML-based data formats who declare namespaces thus make it
possible to reuse those data formats and combine them in novel ways not yet

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 40 / 58

http://www.w3.org/2001/tag/issues.html#xlinkScope-23
http://www.w3.org/2001/tag/issues.html#abstractComponentRefs-37

Architecture of the World Wide Web, Volume One

imagined. Failure to declare namespaces makes such reuse more difficult, even
impractical in some cases.

Attributes are always scoped by the element on which they appear. An attribute that
is "global," that is, one that might meaningfully appear on elements of many types,
including elements in other namespaces, should be explicitly placed in a
namespace. Local attributes, ones associated with only a particular element type,
need not be included in a namespace since their meaning will always be clear from
the context provided by that element.

The type attribute from the W3C XML Schema Instance namespace "http://
www.w3.org/2001/XMLSchema-instance" ([XMLSCHEMA (see page 56)], section
4.3.2) is an example of a global attribute. It can be used by authors of any
vocabulary to make an assertion in instance data about the type of the element on
which it appears. As a global attribute, it must always be qualified. The frame
attribute on an HTML table is an example of a local attribute. There is no value in
placing that attribute in a namespace since the attribute is unlikely to be useful on
an element other than an HTML table.

Applications that rely on DTD processing must impose additional constraints on the
use of namespaces. DTDs perform validation based on the lexical form of the
element and attribute names in the document. This makes prefixes syntactically
significant in ways that are not anticipated by [XMLNS (see page 55)].

4.5.4. Namespace documents

Another benefit of using URIs to build XML namespaces is that the namespace URI
can be used to identify an information resource that contains useful information,
machine-usable and/or human-usable, about terms in the namespace. This type of
information resource is called a namespace document. When a namespace URI
owner provides a namespace document, it is authoritative for the namespace.

Good practice: Namespace adoption

A specification that establishes an XML vocabulary SHOULD place all
element names and global attribute names in a namespace.

Story

Nadia receives representation data from "weather.example.com" in an
unfamiliar data format. She knows enough about XML to recognize which
XML namespace the elements belong to. Since the namespace is
identified by the URI "http://weather.example.com/2003/format", she asks
her browser to retrieve a representation of the identified resource. She
gets back some useful data that allows her to learn more about the data
format. Nadia's browser may also be able to perform some operations
automatically (i.e., unattended by a human overseer) given data that has
been optimized for software agents. For example, her browser might, on
Nadia's behalf, download additional agents to process and render the
format.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 41 / 58

Architecture of the World Wide Web, Volume One

There are many reasons to provide a namespace document. A person might want
to:

 understand the purpose of the namespace,
 learn how to use the markup vocabulary in the namespace,
 find out who controls it and associated policies,
 request authority to access schemas or collateral material about it, or
 report a bug or situation that could be considered an error in some collateral

material.

A processor might want to:

 retrieve a schema, for validation,
 retrieve a style sheet, for presentation, or
 retrieve ontologies, for making inferences.

In general, there is no established best practice for creating representations of a
namespace document; application expectations will influence what data format or
formats are used. Application expectations will also influence whether relevant
information appears directly in a representation or is referenced from it.

For example, the following are examples of data formats for namespace
documents: [OWL10 (see page 53)], [RDDL (see page 53)], [XMLSCHEMA (see
page 56)], and [XHTML11]. Each of these formats meets different requirements
described above for satisfying the needs of an agent that wants more information
about the namespace. Note, however, issues related to fragment identifiers and
content negotiation (§3.2.2) (see page 24) if content negotiation is used.

See TAG issues namespaceDocument-8 (concerning desired characteristics of
namespace documents) and abstractComponentRefs-37 (concerning the use of
fragment identifiers with namespace names to identify abstract components).

4.5.5. QNames in XML

Section 3 of "Namespaces in XML" [XMLNS (see page 55)] provides a syntactic
construct known as a QName for the compact expression of qualified names in XML
documents. A qualified name is a pair consisting of a URI, which names a
namespace, and a local name placed within that namespace. "Namespaces in
XML" provides for the use of QNames as names for XML elements and attributes.

Other specifications, starting with [XSLT10 (see page 56)], have employed the idea
of using QNames in contexts other than element and attribute names, for example
in attribute values and in element content. However, general XML processors
cannot reliably recognize QNames as such when they are used in attribute values
and in element content; for example, the syntax of QNames overlaps with that of

Good practice: Namespace documents

The owner of an XML namespace name SHOULD make available
material intended for people to read and material optimized for software
agents in order to meet the needs of those who will use the namespace
vocabulary.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 42 / 58

http://www.w3.org/2001/tag/issues.html#namespaceDocument-8
http://www.w3.org/2001/tag/issues.html#abstractComponentRefs-37

Architecture of the World Wide Web, Volume One

URIs. Experience has also revealed other limitations to QNames, such as losing
namespace bindings after XML canonicalization.

For more information, see the TAG finding "Using QNames as Identifiers in
Content".

Because QNames are compact, some specification designers have adopted the
same syntax as a means of identifying resources. Though convenient as a
shorthand notation, this usage has a cost. There is no single, accepted way to
convert a QName into a URI or vice versa. Although QNames are convenient, they
do not replace the URI as the identification system of the Web. The use of QNames
to identify Web resources without providing a mapping to URIs is inconsistent with
Web architecture.

See XML namespaces (§4.5.3) (see page 40) for examples of some mapping
strategies.

See also TAG issues rdfmsQnameUriMapping-6 (concerning the mapping of
QNames to URIs), qnameAsId-18 (concerning the use of QNames as identifiers in
XML content), and abstractComponentRefs-37 (concerning the use of fragment
identifiers with namespace names to identify abstract components).

4.5.6. XML ID semantics

Consider the following fragment of XML: <section name="foo">. Does the section
element have what the XML Recommendation refers to as the ID foo (i.e., "foo"
must not appear in the surrounding XML document more than once)? One cannot
answer this question by examining the element and its attributes alone. In XML, the
quality of "being an ID" is associated with the type of an attribute, not its name.
Finding the IDs in a document requires additional processing.

1. Processing the document with a processor that recognizes DTD attribute list
declarations (in the external or internal subset) might reveal a declaration that
identifies the name attribute as an ID. Note: This processing is not necessarily
part of validation. A non-validating, DTD-aware processor can recognize IDs.

2. Processing the document with a W3C XML schema might reveal an element
declaration that identifies the name attribute as an W3C XML Schema ID.

3. In practice, processing the document with another schema language, such as
RELAX NG [RELAXNG (see page 53)], might reveal the attributes declared to
be of ID in the XML Schema sense. Many modern specifications begin
processing XML at the Infoset [INFOSET (see page 52)] level and do not

Constraint: QNames Indistinguishable from URIs

Do not allow both QNames and URIs in attribute values or element
content where they are indistinguishable.

Good practice: QName Mapping

A specification in which QNames serve as resource identifiers MUST
provide a mapping to URIs.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 43 / 58

http://www.w3.org/2001/tag/doc/qnameids.html
http://www.w3.org/2001/tag/issues.html#rdfmsQnameUriMapping-6
http://www.w3.org/2001/tag/issues.html#qnameAsId-18
http://www.w3.org/2001/tag/issues.html#abstractComponentRefs-37

Architecture of the World Wide Web, Volume One

specify normatively how an Infoset is constructed. For those specifications,
any process that establishes the ID type in the Infoset (and Post Schema
Validation Infoset (PSVI) defined in [XMLSCHEMA (see page 56)]) may
usefully identify the attributes of type ID.

4. In practice, applications may have independent means (such as those defined
in the XPointer specification, [XPTRFR (see page 56)] section 3.2) of locating
identifiers inside a document.

To further complicate matters, DTDs establish the ID type in the Infoset whereas
W3C XML Schema produces a PSVI but does not modify the original Infoset. This
leaves open the possibility that a processor might only look in the Infoset and
consequently would fail to recognize schema-assigned IDs.

See the TAG issue xmlIDSemantics-32 for additional background information and
[XML-ID (see page 55)] for a solution under development.

4.5.7. Media types for XML

RFC 3023 defines the Internet media types "application/xml" and "text/xml", and
describes a convention whereby XML-based data formats use Internet media types
with a "+xml" suffix, for example "image/svg+xml".

There are two problems associated with the “text” media types: First, for data
identified as "text/*", Web intermediaries are allowed to "transcode", i.e., convert
one character encoding to another. Transcoding may make the self-description
false or may cause the document to be not well-formed.

Second, representations whose Internet media types begin with "text/" are required,
unless the charset parameter is specified, to be considered to be encoded in US-
ASCII. Since the syntax of XML is designed to make documents self-describing, it is
good practice to omit the charset parameter, and since XML is very often not
encoded in US-ASCII, the use of "text/" Internet media types effectively precludes
this good practice.

4.5.8. Fragment identifiers in XML

The section on media types and fragment identifier semantics (§3.2.1) discusses
the interpretation of fragment identifiers. Designers of an XML-based data format
specification should define the semantics of fragment identifiers in that format. The

Good practice: XML and "text/*"

In general, a representation provider SHOULD NOT assign Internet
media types beginning with "text/" to XML representations.

Good practice: XML and character encodings

In general, a representation provider SHOULD NOT specify the character
encoding for XML data in protocol headers since the data is self-
describing.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 44 / 58

http://www.w3.org/TR/2003/REC-xptr-framework-20030325/#shorthand
http://www.w3.org/2001/tag/issues.html#xmlIDSemantics-32

Architecture of the World Wide Web, Volume One

XPointer Framework [XPTRFR (see page 56)] provides an interoperable starting
point.

When the media type assigned to representation data is "application/xml", there are
no semantics defined for fragment identifiers, and authors should not make use of
fragment identifiers in such data. The same is true if the assigned media type has
the suffix "+xml" (defined in "XML Media Types" [RFC3023 (see page 54)]), and the
data format specification does not specify fragment identifier semantics. In short,
just knowing that content is XML does not provide information about fragment
identifier semantics.

Many people assume that the fragment identifier #abc, when referring to XML data,
identifies the element in the document with the ID "abc". However, there is no
normative support for this assumption. A revision of RFC 3023 is expected to
address this.

See TAG issue fragmentInXML-28.

4.6. Future Directions for Data Formats

Data formats enable the creation of new applications to make use of the information
space infrastructure. The Semantic Web is one such application, built on top of RDF
[RDFXML (see page 53)]. This document does not discuss the Semantic Web in
detail; the TAG expects that future volumes of this document will. See the related
TAG issue httpRange-14.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 45 / 58

http://www.w3.org/2001/tag/issues.html#fragmentInXML-28
http://www.w3.org/2001/tag/issues.html#httpRange-14

Architecture of the World Wide Web, Volume One

5. General Architecture Principles

A number of general architecture principles apply to all three bases of Web
architecture.

5.1. Orthogonal Specifications

Identification, interaction, and representation are orthogonal concepts, meaning that
technologies used for identification, interaction, and representation may evolve
independently. For instance:

 Resources are identified with URIs. URIs can be published without building
any representations of the resource or determining whether any
representations are available.

 A generic URI syntax allows agents to function in many cases without knowing
specifics of URI schemes.

 In many cases one may change the representation of a resource without
disrupting references to the resource (for example, by using content
negotiation (see page 24)).

When two specifications are orthogonal, one may change one without requiring
changes to the other, even if one has dependencies on the other. For example,
although the HTTP specification depends on the URI specification, the two may
evolve independently. This orthogonality increases the flexibility and robustness of
the Web. For example, one may refer by URI to an image without knowing anything
about the format chosen to represent the image. This has facilitated the introduction
of image formats such as PNG and SVG without disrupting existing references to
image resources.

Experience demonstrates that problems arise where orthogonal concepts occur in a
single specification. Consider, for example, the HTML specification which includes
the orthogonal x-www-form-urlencoded specification. Software developers (for
example, of [CGI (see page 52)] applications) might have an easier time finding the
specification if it were published separately and then cited from the HTTP, URI, and
HTML specifications.

Problems also arise when specifications attempt to modify orthogonal abstractions
described elsewhere. An historical version of the HTML specification added a
"Refresh" value to the http-equiv attribute of the meta element. It was defined to be
equivalent to the HTTP header of the same name. The authors of the HTTP
specification ultimately decided not to provide this header and that made the two
specifications awkwardly at odds with each other. The W3C HTML Working Group
eventually removed the "Refresh" value.

A specification should clearly indicate which features overlap with those governed
by another specification.

Principle: Orthogonality

Orthogonal abstractions benefit from orthogonal specifications.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 46 / 58

http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html

Architecture of the World Wide Web, Volume One

5.2. Extensibility

The information in the Web and the technologies used to represent that information
change over time. Extensibility is the property of a technology that promotes
evolution without sacrificing interoperability. Some examples of successful
technologies designed to allow change while minimizing disruption include:

 the fact that URI schemes are orthogonally specified;
 the use of an open set of Internet media types in mail and HTTP to specify

document interpretation;
 the separation of the generic XML grammar and the open set of XML

namespaces for element and attribute names;
 extensibility models in Cascading Style Sheets (CSS), XSLT 1.0, and SOAP;
 user agent plug-ins.

An example of an unsuccessful extension mechanism is HTTP mandatory
extensions [HTTPEXT]. The community has sought mechanisms to extend HTTP,
but apparently the costs of the mandatory extension proposal (notably in
complexity) outweighed the benefits and thus hampered adoption.

Below we discuss the property of "extensibility," exhibited by URIs, some data
formats, and some protocols (through the incorporation of new messages).

Subset language: one language is a subset (or "profile") of a second language if
any document in the first language is also a valid document in the second language
and has the same interpretation in the second language.

Extended language: If one language is a subset of another, the latter superset is
called an extended language; the difference between the languages is called the
extension. Clearly, extending a language is better for interoperability than creating
an incompatible language.

Ideally, many instances of a superset language can be safely and usefully
processed as though they were in the subset language. Languages that can evolve
this way, allowing applications to provide new information when necessary while still
interoperating with applications that only understand a subset of the current
language, are said to be "extensible." Language designers can facilitate extensibility
by defining the default behavior of unknown extensions—for example, that they be
ignored (in some defined way) or should be considered errors.

For example, from early on in the Web, HTML agents followed the convention of
ignoring unknown tags. This choice left room for innovation (i.e., non-standard
elements) and encouraged the deployment of HTML. However, interoperability
problems arose as well. In this type of environment, there is an inevitable tension
between interoperability in the short term and the desire for extensibility. Experience
shows that designs that strike the right balance between allowing change and
preserving interoperability are more likely to thrive and are less likely to disrupt the
Web community. Orthogonal specifications (§5.1) (see page 46) help reduce the
risk of disruption.

For further discussion, see the section on versioning and extensibility (§4.2) (see
page 33). See also TAG issue xmlProfiles-29 and HTML Dialects.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 47 / 58

http://www.w3.org/2001/tag/issues.html#xmlProfiles-29
http://www.w3.org/TR/WD-doctypes

Architecture of the World Wide Web, Volume One

5.3. Error Handling

Errors occur in networked information systems. An error condition can be well-
characterized (e.g., well-formedness errors in XML or 4xx client errors in HTTP) or
arise unpredictably. Error correction means that an agent repairs a condition so
that within the system, it is as though the error never occurred. One example of
error correction involves data retransmission in response to a temporary network
failure. Error recovery means that an agent does not repair an error condition but
continues processing by addressing the fact that the error has occurred.

Agents frequently correct errors without user awareness, sparing users the details
of complex network communications. On the other hand, it is important that agents
recover from error in a way that is evident to users, since the agents are acting on
their behalf.

An agent is not required to interrupt the user (e.g., by popping up a confirmation
box) to obtain consent. The user may indicate consent through pre-selected
configuration options, modes, or selectable user interface toggles, with appropriate
reporting to the user when the agent detects an error. Agent developers should not
ignore usability issues when designing error recovery behavior.

To promote interoperability, specification designers should identify predictable error
conditions. Experience has led to the following observations about error-handling
approaches.

 Protocol designers should provide enough information about an error
condition so that an agent can address the error condition. For instance, an
HTTP 404 status code (not found) is useful because it allows user agents to
present relevant information to users, enabling them to contact the
representation provider in case of problems.

 Experience with the cost of building a user agent to handle the diverse forms
of ill-formed HTML content convinced the designers of the XML specification
to require that agents fail upon encountering ill-formed content. Because users
are unlikely to tolerate such failures, this design choice has pressured all
parties into respecting XML's constraints, to the benefit of all.

 An agent that encounters unrecognized content may handle it in a number of
ways, including by considering it an error; see also the section on extensibility
and versioning (§4.2).

 Error behavior that is appropriate for a person may not be appropriate for
software. People are capable of exercising judgement in ways that software
applications generally cannot. An informal error response may suffice for a
person but not for a processor.

See the TAG issue contentTypeOverride-24, which concerns the source of
authoritative metadata.

Principle: Error recovery

Agents that recover from error by making a choice without the user's
consent are not acting on the user's behalf.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 48 / 58

http://www.w3.org/2001/tag/issues.html#contentTypeOverride-24

Architecture of the World Wide Web, Volume One

5.4. Protocol-based Interoperability

The Web follows Internet tradition in that its important interfaces are defined in
terms of protocols, by specifying the syntax, semantics, and sequencing constraints
of the messages interchanged. Protocols designed to be resilient in the face of
widely varying environments have helped the Web scale and have facilitated
communication across multiple trust boundaries. Traditional application
programming interfaces (APIs) do not always take these constraints into account,
nor should they be required to. One effect of protocol-based design is that the
technology shared among agents often lasts longer than the agents themselves.

It is common for programmers working with the Web to write code that generates
and parses these messages directly. It is less common, but not unusual, for end
users to have direct exposure to these messages. It is often desirable to provide
users with access to format and protocol details: allowing them to “view source,”
whereby they may gain expertise in the workings of the underlying system.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 49 / 58

Architecture of the World Wide Web, Volume One

6. Glossary

Content negotiation (see page 24)
The practice of providing multiple representations available via the same URI.
Which representation is served depends on negotiation between the
requesting agent and the agent serving the representations.

Dereference a URI (see page 20)
Access a representation of the resource identified by the URI.

Error correction (see page 48)
An agent repairs an error so that within the system, it is as though the error
never occurred.

Error recovery (see page 48)
An agent invokes exceptional behavior because it does not correct the error.

Extended language (see page 47)
If one language is a subset of another, the latter is called an extended
language.

Fragment identifier (see page 18)
The part of a URI that allows identification of a secondary resource.

Information resource (see page 11)
A resource which has the property that all of its essential characteristics can
be conveyed in a message.

Link (see page 38)
A relationship between two resources when one resource (representation)
refers to the other resource by means of a URI.

Message (see page 20)
A unit of communication between agents.

Namespace document (see page 41)
An information resource identified by an XML Namespace URI that contains
useful information, machine-usable and/or human-usable, about terms in a
particular XML namespace. It is useful, though not manditory, that the URI
employed as a namespace name identifies a namespace document.

Representation (see page 22)
Data that encodes information about resource state.

Resource (see page 10)
Anything that might be identified by a URI.

Safe interaction (see page 26)
Interaction with a resource where an agent does not incur any obligation
beyond the interaction.

Secondary resource (see page 18)
A resource related to another resource through the primary resource with
additional identifying information (the fragment identifier).

Subset language (see page 47)
One language is a subset of a second language if any document in the first
language is also a valid document in the second language and has the same
interpretation in the second language.

URI (see page 5)
Acronym for Uniform Resource Identifier.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 50 / 58

Architecture of the World Wide Web, Volume One

URI aliases (see page 11)
Two or more different URIs that that identify the same resource.

URI collision (see page 12)
The use of the same URI to refer to more than one resource in the context of
Web protocols and formats.

URI ownership (see page 12)
A relationship between a URI and a social entity, such as a person,
organization, or specification.

URI persistence (see page 29)
The social expectation that once a URI identifies a particular resource, it
should continue indefinitely to refer to that resource.

URI reference (see page 39)
An operational shorthand for a URI.

Uniform Resource Identifier (URI) (see page 10)
A global identifier in the context of the World Wide Web.

Unsafe interaction (see page 26)
Interaction with a resource that is not safe interaction.

User agent (see page 5)
One type of Web agent; a piece of software acting on behalf of a person.

WWW (see page 5)
Acronym for World Wide Web.

Web (see page 5)
Shortened form of World Wide Web.

Web agent (see page 5)
A person or a piece of software acting on the information space on behalf of a
person, entity, or process.

World Wide Web (see page 5)
An information space in which items of interest are identified by Uniform
Resource Identifiers.

XML-based format (see page 39)
One that conforms to the syntax rules defined in the XML specification.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 51 / 58

Architecture of the World Wide Web, Volume One

7. References

CGI
Common Gateway Interface/1.1 Specification. Available at http://
hoohoo.ncsa.uiuc.edu/cgi/interface.html.

CHIPS
Common HTTP Implementation Problems, O. Théreaux, January 2003. This
W3C Team Submission is available at http://www.w3.org/TR/chips/.

CUAP
Common User Agent Problems, K. Dubost, January 2003. This W3C Team
Submission is available at http://www.w3.org/TR/cuap.

Cool
Cool URIs don't change T. Berners-Lee, W3C, 1998 Available at http://
www.w3.org/Provider/Style/URI. Note that the title is somewhat misleading. It
is not the URIs that change, it is what they identify.

Eng90
Knowledge-Domain Interoperability and an Open Hyperdocument System, D.
C. Engelbart, June 1990.

HTTPEXT
Mandatory Extensions in HTTP, H. Frystyk Nielsen, P. Leach, S. Lawrence,
20 January 1998. This expired Internet Draft is available at http://www.w3.org/
Protocols/HTTP/ietf-http-ext/draft-frystyk-http-mandatory.

IANASchemes
IANA's online registry of URI Schemes is available at http://www.iana.org/
assignments/uri-schemes.

IETFXML
IETF Guidelines For The Use of XML in IETF Protocols, S. Hollenbeck, M.
Rose, L. Masinter, eds., 2 November 2002. This Internet Draft is available at
http://www.imc.org/ietf-xml-use/xml-guidelines-07.txt. If this document is no
longer available, refer to the ietf-xml-use mailing list.

INFOSET
XML Information Set (Second Edition), R. Tobin, J. Cowan, Editors, W3C
Recommendation, 04 February 2004, http://www.w3.org/TR/2004/REC-xml-
infoset-20040204. Latest version available at http://www.w3.org/TR/xml-
infoset.

IRI
IETF Internationalized Resource Identifiers (IRIs), M. Dürst, M. Suignard,
Eds., November 2004. In an 8 December 2004 announcement, the IESG
approved draft-duerst-iri-11 as a Proposed Standard of the IETF. References
to the IRI specification in Volume One of Architecture of the World Wide Web
are to that Proposed Standard. Once the IETF issues a Request For
Comments (RFC) number for the specification, this W3C Recommendation
may be updated to refer to that RFC. See also the latest information about the
IRI specification.

MEDIATYPEREG
IANA's online registry of Internet Media Types is available at http://
www.iana.org/assignments/media-types/index.html.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 52 / 58

http://hoohoo.ncsa.uiuc.edu/cgi/interface.html
http://www.w3.org/TR/chips/
http://www.w3.org/TR/cuap
http://www.w3.org/Provider/Style/URI.html
http://www.bootstrap.org/augment/AUGMENT/132082.html
http://www.w3.org/Protocols/HTTP/ietf-http-ext/draft-frystyk-http-mandatory
http://www.iana.org/assignments/uri-schemes
http://www.imc.org/ietf-xml-use/xml-guidelines-07.txt
http://www.imc.org/ietf-xml-use/index.html
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/xml-infoset
http://www.w3.org/International/iri-edit/draft-duerst-iri-11.txt
http://www1.ietf.org/mail-archive/web/ietf-announce/current/msg00752.html
http://www.w3.org/International/iri-edit/draft-duerst-iri-11.txt
http://www.w3.org/International/iri-edit/draft-duerst-iri.html
http://www.iana.org/assignments/media-types/index.html

Architecture of the World Wide Web, Volume One

OWL10
OWL Web Ontology Language Reference, M. Dean, G. Schreiber, Editors,
W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-
owl-ref-20040210/. Latest version available at http://www.w3.org/TR/owl-ref/.

P3P10
The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, M. Marchiori,
Editor, W3C Recommendation, 16 April 2002, http://www.w3.org/TR/2002/
REC-P3P-20020416/. Latest version available at http://www.w3.org/TR/P3P/.

RDDL
Resource Directory Description Language (RDDL), J. Borden, T. Bray, eds., 1
June 2003. This document is available at http://www.tbray.org/tag/rddl/
rddl3.html.

RDFXML
RDF/XML Syntax Specification (Revised), D. Beckett, Editor, W3C
Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-
syntax-grammar-20040210/. Latest version available at http://www.w3.org/TR/
rdf-syntax-grammar.

RELAXNG
The RELAX NG schema language project.

REST
Representational State Transfer (REST), Chapter 5 of "Architectural Styles
and the Design of Network-based Software Architectures", Doctoral Thesis of
R. T. Fielding, 2000. Designers of protocol specifications in particular should
invest time in understanding the REST model and the relevance of its
principles to a given design. These principles include statelessness, clear
assignment of roles to parties, uniform address space, and a limited, uniform
set of verbs. Available at http://www.ics.uci.edu/~fielding/pubs/dissertation/
rest_arch_style.htm.

RFC2045
IETF RFC 2045: Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies, N. Freed, N. Borenstein, November 1996.
Available at http://www.ietf.org/rfc/rfc2045.txt.

RFC2046
IETF RFC 2046: Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types, N. Freed, N. Borenstein, November 1996. Available at http://
www.ietf.org/rfc/rfc2046.txt.

RFC2119
IETF RFC 2119: Key words for use in RFCs to Indicate Requirement Levels,
S. Bradner, March 1997. Available at http://www.ietf.org/rfc/rfc2119.txt.

RFC2141
IETF RFC 2141: URN Syntax, R. Moats, May 1997. Available at http://
www.ietf.org/rfc/rfc2141.txt.

RFC2326
IETF RFC 2326: Real Time Streaming Protocol (RTSP), H. Schulzrinne, A.
Rao, R. Lanphier, April 1998. Available at: http://www.ietf.org/rfc/rfc2326.txt.

RFC2397
IETF RFC 2397: The “data” URL scheme, L. Masinter, August 1998. Available
at: http://www.ietf.org/rfc/rfc2397.txt.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 53 / 58

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/P3P/
http://www.w3.org/TR/P3P/
http://www.tbray.org/tag/rddl/rddl3.html
http://www.w3.org/TR/rdf-syntax-grammar
http://www.w3.org/TR/rdf-syntax-grammar
http://www.relaxng.org/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2326.txt
http://www.ietf.org/rfc/rfc2397.txt

Architecture of the World Wide Web, Volume One

RFC2616
IETF RFC 2616: Hypertext Transfer Protocol - HTTP/1.1, J. Gettys, J. Mogul,
H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt.

RFC2717
IETF Registration Procedures for URL Scheme Names, R. Petke, I. King,
November 1999. Available at http://www.ietf.org/rfc/rfc2717.txt.

RFC2718
IETF RFC 2718: Guidelines for new URL Schemes, L. Masinter, H.
Alvestrand, D. Zigmond, R. Petke, November 1999. Available at: http://
www.ietf.org/rfc/rfc2718.txt.

RFC2818
IETF RFC 2818: HTTP Over TLS, E. Rescorla, May 2000. Available at: http://
www.ietf.org/rfc/rfc2818.txt.

RFC3023
IETF RFC 3023: XML Media Types, M. Murata, S. St. Laurent, D. Kohn,
January 2001. Available at: http://www.ietf.org/rfc/rfc3023.txt

RFC3236
IETF RFC 3236: The 'application/xhtml+xml' Media Type, M. Baker, P. Stark,
January 2002. Available at: http://www.ietf.org/rfc/rfc3236.txt

RFC3261
IETF RFC 3261: SIP: Session Initiation Protocol, J. Rosenberg, H.
Schulzrinne, G. Camarillo, et. al., June 2002. Available at: http://www.ietf.org/
rfc/rfc3261.txt

RFC3920
IETF RFC 3920: Extensible Messaging and Presence Protocol (XMPP): Core,
P. Saint-Andre, Ed., October 2004. Available at: http://www.ietf.org/rfc/
rfc3920.txt

RFC977
IETF RFC 977: Network News Transfer Protocol, B. Kantor, P. Lapsley,
February 1986. Available at http://www.ietf.org/rfc/rfc977.txt.

SOAP12
SOAP Version 1.2 Part 1: Messaging Framework, J. Moreau, N. Mendelsohn,
H. Frystyk Nielsen, et. al., Editors, W3C Recommendation, 24 June 2003,
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/. Latest version
available at http://www.w3.org/TR/soap12-part1/.

SVG11
Scalable Vector Graphics (SVG) 1.1 Specification, 藤沢 淳, J. Ferraiolo, D.
Jackson, Editors, W3C Recommendation, 14 January 2003, http://
www.w3.org/TR/2003/REC-SVG11-20030114/. Latest version available at
http://www.w3.org/TR/SVG11/.

UNICODE
The Unicode Consortium, The Unicode Standard, Version 4, ISBN
0-321-18578-1, as updated from time to time by the publication of new
versions. See http://www.unicode.org/unicode/standard/versions for the latest
Unicode version and additional information on versions of the standard and of
the Unicode Character Database.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 54 / 58

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2717.txt
http://www.ietf.org/rfc/rfc2718.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc3236.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3920.txt
http://www.ietf.org/rfc/rfc977.txt
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVG11/
http://www.unicode.org/
http://www.unicode.org/unicode/standard/versions

Architecture of the World Wide Web, Volume One

URI
IETF Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R.
Fielding, L. Masinter, Eds., September 2004. In an 18 October 2004
announcement, the IESG approved draft-fielding-uri-rfc2396bis-07 as a Full
Standard of the IETF. References to the URI specification in Volume One of
Architecture of the World Wide Web are to that Full Standard. Once the IETF
issues a Request For Comments (RFC) number for the specification, this
W3C Recommendation may be updated to refer to that RFC. See also the
latest information about the URI specification.

UniqueDNS
IAB Technical Comment on the Unique DNS Root, B. Carpenter, 27
September 1999. Available at http://www.icann.org/correspondence/iab-tech-
comment-27sept99.htm.

VOICEXML2
Voice Extensible Markup Language (VoiceXML) Version 2.0, B. Porter, A.
Hunt, K. Rehor, et. al., Editors, W3C Recommendation, 16 March 2004, http://
www.w3.org/TR/2004/REC-voicexml20-20040316/. Latest version available at
http://www.w3.org/TR/voicexml20.

XHTML11
XHTML™ 1.1 - Module-based XHTML, S. McCarron, M. Altheim, Editors,
W3C Recommendation, 31 May 2001, http://www.w3.org/TR/2001/REC-
xhtml11-20010531. Latest version available at http://www.w3.org/TR/xhtml11/.

XLink10
XML Linking Language (XLink) Version 1.0, E. Maler, S. DeRose, D. Orchard,
Editors, W3C Recommendation, 27 June 2001, http://www.w3.org/TR/2001/
REC-xlink-20010627/. Latest version available at http://www.w3.org/TR/xlink/.

XML-ID
xml:id Version 1.0, D. Veillard, J. Marsh, Editors, W3C Working Draft (work in
progress), 07 April 2004, http://www.w3.org/TR/2004/WD-xml-id-20040407.
Latest version available at http://www.w3.org/TR/xml-id/.

XML10
Extensible Markup Language (XML) 1.0 (Third Edition), F. Yergeau, J. Paoli,
C. M. Sperberg-McQueen, et. al., Editors, W3C Recommendation,
04 February 2004, http://www.w3.org/TR/2004/REC-xml-20040204. Latest
version available at http://www.w3.org/TR/REC-xml.

XML11
Extensible Markup Language (XML) 1.1, J. Paoli, C. M. Sperberg-McQueen,
J. Cowan, et. al., Editors, W3C Recommendation, 04 February 2004, http://
www.w3.org/TR/2004/REC-xml11-20040204/. Latest version available at
http://www.w3.org/TR/xml11/.

XMLNS
Namespaces in XML 1.1, R. Tobin, D. Hollander, A. Layman, et. al., Editors,
W3C Recommendation, 04 February 2004, http://www.w3.org/TR/2004/REC-
xml-names11-20040204. Latest version available at http://www.w3.org/TR/
xml-names11/.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 55 / 58

http://gbiv.com/protocols/uri/rev-2002/draft-fielding-uri-rfc2396bis-07.html
http://www1.ietf.org/mail-archive/web/ietf-announce/current/msg00602.html
http://gbiv.com/protocols/uri/rev-2002/draft-fielding-uri-rfc2396bis-07.html
http://gbiv.com/protocols/uri/rev-2002/rfc2396bis.html
http://www.icann.org/correspondence/iab-tech-comment-27sept99.htm
http://www.w3.org/TR/voicexml20
http://www.w3.org/TR/voicexml20
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xml-id/
http://www.w3.org/TR/xml-id/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xml-names11/
http://www.w3.org/TR/xml-names11/

Architecture of the World Wide Web, Volume One

XMLSCHEMA
XML Schema Part 1: Structures, D. Beech, M. Maloney, H. S. Thompson, et.
al., Editors, W3C Recommendation, 02 May 2001, http://www.w3.org/TR/
2001/REC-xmlschema-1-20010502/. Latest version available at http://
www.w3.org/TR/xmlschema-1/.

XPTRFR
XPointer Framework, E. Maler, N. Walsh, P. Grosso, et. al., Editors, W3C
Recommendation, 25 March 2003, http://www.w3.org/TR/2003/REC-xptr-
framework-20030325/. Latest version available at http://www.w3.org/TR/xptr-
framework/.

XSLT10
XSL Transformations (XSLT) Version 1.0, J. Clark, Editor, W3C
Recommendation, 16 November 1999, http://www.w3.org/TR/1999/REC-
xslt-19991116. Latest version available at http://www.w3.org/TR/xslt.

7.1. Architectural Specifications

ATAG10
Authoring Tool Accessibility Guidelines 1.0, C. McCathieNevile, I. Jacobs, J.
Treviranus, et. al., Editors, W3C Recommendation, 03 February 2000, http://
www.w3.org/TR/2000/REC-ATAG10-20000203. Latest version available at
http://www.w3.org/TR/ATAG10.

CHARMOD
Character Model for the World Wide Web 1.0: Fundamentals, R. Ishida, M. J.
Dürst, M. Wolf, et. al., Editors, W3C Working Draft (work in progress),
25 February 2004, http://www.w3.org/TR/2004/WD-charmod-20040225/.
Latest version available at http://www.w3.org/TR/charmod/.

DIPRINCIPLES
Device Independence Principles, R. Gimson, Editor, W3C Note,
01 September 2003, http://www.w3.org/TR/2003/NOTE-di-princ-20030901/.
Latest version available at http://www.w3.org/TR/di-princ/.

EXTLANG
Web Architecture: Extensible Languages, T. Berners-Lee, D. Connolly, 10
February 1998. This W3C Note is available at http://www.w3.org/TR/1998/
NOTE-webarch-extlang-19980210.

Fielding
Principled Design of the Modern Web Architecture, R.T. Fielding and R.N.
Taylor, UC Irvine. In Proceedings of the 2000 International Conference on
Software Engineering (ICSE 2000), Limerick, Ireland, June 2000, pp. 407-416.
This document is available at http://www.ics.uci.edu/~fielding/pubs/
webarch_icse2000.pdf.

QA
QA Framework: Specification Guidelines, D. Hazaël-Massieux, L. Rosenthal,
L. Henderson, et. al., Editors, W3C Working Draft (work in progress),
30 August 2004, http://www.w3.org/TR/2004/WD-qaframe-spec-20040830/.
Latest version available at http://www.w3.org/TR/qaframe-spec/.

RFC1958
IETF RFC 1958: Architectural Principles of the Internet, B. Carpenter, June
1996. Available at http://www.ietf.org/rfc/rfc1958.txt.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 56 / 58

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/ATAG10
http://www.w3.org/TR/ATAG10
http://www.w3.org/TR/charmod/
http://www.w3.org/TR/charmod/
http://www.w3.org/TR/di-princ/
http://www.w3.org/TR/di-princ/
http://www.w3.org/TR/1998/NOTE-webarch-extlang-19980210
http://www.ics.uci.edu/~fielding/pubs/webarch_icse2000.pdf
http://www.w3.org/TR/qaframe-spec/
http://www.w3.org/TR/qaframe-spec/
http://www.ietf.org/rfc/rfc1958.txt

Architecture of the World Wide Web, Volume One

SPECVAR
Variability in Specifications, L. Rosenthal, D. Hazaël-Massieux, Editors, W3C
Working Draft (work in progress), 30 August 2004, http://www.w3.org/TR/
2004/WD-spec-variability-20040830/. Latest version available at http://
www.w3.org/TR/spec-variability/.

UAAG10
User Agent Accessibility Guidelines 1.0, J. Gunderson, I. Jacobs, E. Hansen,
Editors, W3C Recommendation, 17 December 2002, http://www.w3.org/TR/
2002/REC-UAAG10-20021217/. Latest version available at http://www.w3.org/
TR/UAAG10/.

WCAG20
Web Content Accessibility Guidelines 2.0, W. Chisholm, J. White, B. Caldwell,
et. al., Editors, W3C Working Draft (work in progress), 30 July 2004, http://
www.w3.org/TR/2004/WD-WCAG20-20040730/. Latest version available at
http://www.w3.org/TR/WCAG20/.

WSA
Web Services Architecture, D. Booth, F. McCabe, E. Newcomer, et. al.,
Editors, W3C Note, 11 February 2004, http://www.w3.org/TR/2004/NOTE-ws-
arch-20040211/. Latest version available at http://www.w3.org/TR/ws-arch/.

XAG
XML Accessibility Guidelines, S. B. Palmer, C. McCathieNevile, D. Dardailler,
Editors, W3C Working Draft (work in progress), 03 October 2002, http://
www.w3.org/TR/2002/WD-xag-20021003. Latest version available at http://
www.w3.org/TR/xag.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 57 / 58

http://www.w3.org/TR/spec-variability/
http://www.w3.org/TR/spec-variability/
http://www.w3.org/TR/UAAG10/
http://www.w3.org/TR/UAAG10/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/xag
http://www.w3.org/TR/xag

Architecture of the World Wide Web, Volume One

8. Acknowledgments

This document was authored by the W3C Technical Architecture Group which
included the following participants: Tim Berners-Lee (co-Chair, W3C), Tim Bray
(Antarctica Systems), Dan Connolly (W3C), Paul Cotton (Microsoft Corporation),
Roy Fielding (Day Software), Mario Jeckle (Daimler Chrysler), Chris Lilley (W3C),
Noah Mendelsohn (IBM), David Orchard (BEA Systems), Norman Walsh (Sun
Microsystems), and Stuart Williams (co-Chair, Hewlett-Packard).

The TAG appreciates the many contributions on the TAG's public mailing list, www-
tag@w3.org (archive), which have helped to improve this document.

In addition, contributions by David Booth, Erik Bruchez, Kendall Clark, Karl Dubost,
Bob DuCharme, Martin Duerst, Olivier Fehr, Al Gilman, Tim Goodwin, Elliotte Rusty
Harold, Tony Hammond, Sandro Hawke, Ryan Hayes, Dominique Hazaël-
Massieux, Masayasu Ishikawa, David M. Karr, Graham Klyne, Jacek Kopecky, Ken
Laskey, Susan Lesch, Håkon Wium Lie, Frank Manola, Mark Nottingham, Bijan
Parsia, Peter F. Patel-Schneider, David Pawson, Michael Sperberg-McQueen,
Patrick Stickler, and Yuxiao Zhao are gratefully acknowledged.

Copyright (C) 2002-2004 W3C (R) (MIT, ERCIM, Keio), All Rights Reserved. Page 58 / 58

http://lists.w3.org/Archives/Public/www-tag/

	Architecture of the World Wide Web, Volume One
	W3C Recommendation 15 December 2004
	Abstract
	Status of this document
	Table of Contents
	List of Principles, Constraints, and Good Practice Notes

	1. Introduction
	1.1. About this Document
	1.1.1. Audience of this Document
	1.1.2. Scope of this Document
	1.1.3. Principles, Constraints, and Good Practice Notes

	2. Identification
	2.1. Benefits of URIs
	2.2. URI/Resource Relationships
	2.2.1. URI collision
	2.2.2. URI allocation
	2.2.2.1. URI ownership
	2.2.2.2. Other allocation schemes

	2.2.3. Indirect Identification

	2.3. URI Comparisons
	2.3.1. URI aliases
	2.3.2. Representation reuse

	2.4. URI Schemes
	2.4.1. URI Scheme Registration

	2.5. URI Opacity
	2.6. Fragment Identifiers
	2.7. Future Directions for Identifiers
	2.7.1. Internationalized identifiers
	2.7.2. Assertion that two URIs identify the same resource

	3. Interaction
	3.1. Using a URI to Access a Resource
	3.1.1. Details of retrieving a representation

	3.2. Representation Types and Internet Media Types
	3.2.1. Representation types and fragment identifier semantics
	3.2.2. Fragment identifiers and content negotiation

	3.3. Inconsistencies between Representation Data and Metadata
	3.4. Safe Interactions
	3.4.1. Unsafe interactions and accountability

	3.5. Representation Management
	3.5.1. URI persistence
	3.5.2. Linking and access control
	3.5.3. Supporting Navigation

	3.6. Future Directions for Interaction

	4. Data Formats
	4.1. Binary and Textual Data Formats
	4.2. Versioning and Extensibility
	4.2.1. Versioning
	4.2.2. Versioning and XML namespace policy
	4.2.3. Extensibility
	4.2.4. Composition of data formats

	4.3. Separation of Content, Presentation, and Interaction
	4.4. Hypertext
	4.4.1. URI references

	4.5. XML-Based Data Formats
	4.5.1. When to use an XML-based format
	4.5.2. Links in XML
	4.5.3. XML namespaces
	4.5.4. Namespace documents
	4.5.5. QNames in XML
	4.5.6. XML ID semantics
	4.5.7. Media types for XML
	4.5.8. Fragment identifiers in XML

	4.6. Future Directions for Data Formats

	5. General Architecture Principles
	5.1. Orthogonal Specifications
	5.2. Extensibility
	5.3. Error Handling
	5.4. Protocol-based Interoperability

	6. Glossary
	7. References
	7.1. Architectural Specifications

	8. Acknowledgments

