

 [image: PDFreactor Logo]

 Manual

 RealObjects GmbH

 Version 11.6.11

 2006-2024 RealObjects

 PDFreactor is a registered trademark of RealObjects GmbH.

 Installation

 PDFreactor can be deployed in various ways:

 	

 Java library: Use this to integrate PDFreactor directly into your Java applications.

	

 Web Service: The PDFreactor Web Service is used by clients (PHP PHP: Hypertext Preprocessor, an
 open-source server-side scripting language (http://www.php.net/)
 , .NET pronounced "dot net", a software framework by Microsoft (https://www.microsoft.com/net)
 , Python, Ruby,
 Perl, JavaScript, Node.js and Java). It is also a RESTful service and thus can be used by any language utilizing the REST API.

	

 Command line: Use the PDFreactor command line application for direct integration into
 shell scripts.

 When it is used as a Java library no further installation is required.

 However, if the clients for PHP, .NET, Python, Ruby, Perl, JavaScript, Node.js, Java (the client, not the library) or the Python Command Line APIs are used, the PDFreactor Web Service is required.

 For details about system requirements and information about the latest changes, please see the readme and changelog
 files contained within the PDFreactor installation package.

 The PDFreactor Library

 The PDFreactor package comes with two PDFreactor libraries:

 	
 pdfreactor.jar - located in the PDFreactor/libs directory

	
 pdfreactorcore.jar - located in the PDFreactor/libs/modular directory

 It is generally recommended to use the pdfreactor.jar, since it not only contains PDFreactor itself but
 also all 3rd party libraries required by PDFreactor. This JAR Java ARchive, a file container used for Java classes.
 file is a stand-alone PDFreactor library. No other libraries are required.

 If some of the 3rd party libraries are already installed on the server or if certain functionality is not required, the pdfreactorcore.jar can be used. It only contains PDFreactor, while required and optional 3rd
 party libraries are contained in the required and optional directories, which should be added to the PDFreactor class path
 manually depending on whether or not they are already installed on the server or their functionality is desired.

 Please refer to the README.txt in the PDFreactor/libs directory for more information about
 the 3rd party libraries.

 The PDFreactor Web Service

 If PDFreactor is deployed using the PDFreactor installer, the installation provides an option to
 automatically install the PDFreactor Web Service with PDFreactor. No further configuration is
 required in this case.

 The PDFreactor service is run on the application server Jetty. It is a requirement for the .NET, PHP, Perl, Python, Ruby, Java,
 JavaScript, Node.js and Python Command Line cients.

 By default, Jetty will listen at localhost:9423.

 for information on how to modify this and https://www.eclipse.org/jetty/ for further details about Jetty and ways to configure it.

 On Unix and Linux platforms the separate installation of a Java VM is required. Furthermore the PDFreactor Web Service must be started manually. To do so, after extracting the archive or
 installing the RPM go to the bin subdirectory and use the following command to start the service:

 ./pdfreactorwebservice start

 To stop the service, use:

 ./pdfreactorwebservice stop

 To display whether the service is already running, use:

 ./pdfreactorwebservice status

 PDFreactor Web Service Configuration on Windows

 On Windows systems the PDFreactor Web Service is started with the Local Service account by
 default.

 When the Web Service is started using this account, it can only access files from the local file system that the Local Service
 account is allowed to access. For example, files from the user's home directory cannot be read on most systems. The Web Service may or may not be able to read
 files from other locations on the disk depending on the system configuration. If you need the Web Service to be able to access a particular file or folder on
 the disk, add the Local Service user to the list of users that can access this file or folder, and enable read permissions for this
 user.

 In production environments, you may wish to start the PDFreactor Web Service with its own distinct user account.

 PDFreactor Web Service Configuration on Linux / Unix

 If PDFreactor was installed using the RPM package, PDFreactor will automatically be registered as a
 systemd service if your system supports systemd, otherwise it will be registered as
 a "System V Init" script.

 Installing PDFreactor through the RPM installer will create a system user called pdfreactor.
 The PDFreactor Web Service will be executed using this user by default.

 Running PDFreactor on systems that support systemd

 The PDFreactor Web Service systemd service will automatically be enabled and started by the RPM installer.

 You can start, stop, restart or display the status of this service as with any other systemd
 service:

 service pdfreactor start
service pdfreactor stop
service pdfreactor restart
service pdfreactor status

 Running PDFreactor as a System V Init Service

 The RPM installer will register as a "System V Init" service on systems that do not support systemd.

 You can start, stop, restart or display the status of this service as with any other "System V Init" service:

 /etc/init.d/pdfreactorwebservice start
/etc/init.d/pdfreactorwebservice stop
/etc/init.d/pdfreactorwebservice restart
/etc/init.d/pdfreactorwebservice status

 Installing PDFreactor from a Tarball

 PDFreactor is also available as tarball for systems that do not support RPM, or for users that prefer
 deployment from a tarball. To start the PDFreactor Web Service after unpacking the tarball, please use
 the bin/pdfreactorwebservice script located in the PDFreactor deployment directory, e.g.:

 <user.home>/PDFreactor/bin/pdfreactorwebservice start

 When the PDFreactor Web Service is started in this way, it will be run with the permissions of the user
 that started it. User privileges can be configured in PDFreactor/jetty/start.d/user-privileges.ini.

 PDFreactor Web Service Configuration on macOS

 If the "Jetty Application Server" installation component is selected in the .DMG installer, the PDFreactor Web
 Service will be registered as a LaunchDaemon. This LaunchDaemon will be managed by the user _pdfreactor.
 This user is removed automatically when PDFreactor is uninstalled again. Note that if you need PDFreactor to have
 access to files in your file system, you need to make sure they can be read by the _pdfreactor user.

 PHP Requirements

 To use PDFreactor with the PHP API a web server (e.g. Apache) with a PHP-installation (Version >4.3 or >5.0) is required.

 The PDFreactor service must be running within Jetty on the same machine.

 .NET Requirements

 The PDFreactor .NET API requires the Microsoft .NET framework 4.0 including the latest patches.

 The PDFreactor service must be running within Jetty on the same machine.

 Additional Requirements for ASP.NET

 The .NET framework 4.0 must be registered at your IIS Internet Information
 Services (https://www.iis.net/)
 -server.

 https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-2.0/k6h9cz8h(v=vs.80)

 Perl/Python/Ruby Requirements

 The Perl/Python/Ruby API can be used via CGI Common Gateway Interface, a protocol for calling external software via web server (https://www.w3.org/CGI/)
 on your web server, or by the corresponding modules for the Apache web server (mod-python, mod-perl, mod-ruby).

 The PDFreactor service must be running within Jetty on the same machine.

 For specific installation requirements please have a look at the install.txt of the related client.

 Integration

 You can integrate PDFreactor by directly using it as a Java library, by using its .NET, PHP, Perl, Python, Ruby, JavaScript or Node.js
 API, or by running it on the command line.

 Memory

 Depending on the input documents, PDFreactor may require additional memory. Large and especially complex documents, e.g. documents
 containing several hundred pages or documents using a complex nested HTML structure, may require larger amounts of memory.

 The exact amount of memory required depends nearly entirely on the input document. Should you run into any issues converting a document, we recommend increasing
 the memory to e.g. 2GB or higher before attempting another conversion. First signs of memory running short are unusal long conversion times and high CPU usage of
 multiple threads, even if only one document is being converted.

 for how to increase the memory available to the PDFreactor
 Web Service.

 The memory available to the PDFreactor Preview app is set to 1024m by default.

 To increase the amount of memory available to the PDFreactor Preview app, you need to adapt the -Xmx1024m
 parameter in the file PDFreactor/bin/PDFreactor Preview.vmoptions.

 To increase the memory to e.g. 2GB, change the parameter to -Xmx2048m or -Xmx2g and restart the PDFreactor
 Preview app.

 Parallel Conversions

 When doing multiple parallel PDF conversions, it is important to adapt the available memory to the number of parallel conversions.

 Generally, a common document requires no more than 64MB of memory. To safely convert up to 16 of these documents in parallel, PDFreactor
 requires at least 1GB of memory (16 * 64MB). Keep in mind that this is merely a rule of thumb and that the amount of required memory may vary depending on the
 documents and integration environments.

 Using the Java library

 With just a few lines you can create PDFs inside your applications and servlet.

 The following sample program converts https://www.realobjects.com/ to PDF and saves it as output.pdf.

 import java.io.FileOutputStream;
import java.io.OutputStream;

import com.realobjects.pdfreactor.PDFreactor;
import com.realobjects.pdfreactor.Configuration;
import com.realobjects.pdfreactor.Result;

public class FirstStepsWithPDFreactor {
 public static void main(String[] args) {
 PDFreactor pdfReactor = new PDFreactor();
 // configuration settings
 Configuration config = new Configuration();
 // the input document
 config.setDocument("https://www.realobjects.com");
 // conversion result
 Result result = null;

 try {
 // render the PDF document
 result = pdfReactor.convert(config);
 byte[] pdf = result.getDocument();

 try (OutputStream outputStream = new FileOutputStream("output.pdf")) {
 outputStream.write(pdf);
 } catch (IOException e) {
 e.printStackTrace();
 }
 } catch (PDFreactorException e) {
 // partial result without PDF
 result = e.getResult();
 e.printStackTrace();
 }
 }
}

 The API documentation for details.

 Using PDFreactor in a Servlet

 When used in a Servlet to generate a PDF that is returned to the client (e.g. a browser) PDFreactor can write directly to the ServletOutputStream:

 ServletOutputStream out = response.getOutputStream();
response.setContentType("application/pdf");
pdfReactor.convert(config, out);
out.close();

 Logging Handler

 PDFreactor uses the Java Logging API to output information about its progress. A simple console logger can be created like
 this:

 Logger pdfReactorLogger = Logger.getAnonymousLogger();
pdfReactorLogger.setLevel(Level.INFO);
pdfReactorLogger.addHandler(new DefaultHandler());
config.setLogger(pdfReactorLogger);

 https://docs.oracle.com/javase/8/docs/technotes/guides/logging/

 OSGi Support

 PDFreactor provides support for OSGi out of the box. The Manifest of the self-contained variant of PDFreactor (pdfreactor.jar) includes all entries required to deploy it as a bundle in your OSGi environment. Only the self-contained version of
 PDFreactor is OSGi compatible. The non-self-contained variant of PDFreactor ("pdfreactorcore.jar" and associated libraries) does not contain appropriate
 Manifest entries.

 Running PDFreactor Without Graphics Environment

 If you are using PDFreactor on a system without a graphics environment like X11, you need to enable the headless mode of Java. This
 can be done by setting the appropriate Java system property. You can either set the property as a Java VM argument or you can set it inside your Java code. it is
 recommend to set it as early as possible, as changing it affects the entire Java VM instance. In any case it is important to set the property before PDFreactor is
 instantiated.

 As a Java VM Argument

 java -Djava.awt.headless=true

 In Java Code

 public class MyPDFreactorIntegration {
 // set the headless system property
 static {
 System.setProperty("java.awt.headless", "true");
 }

 public void createPDF() {
 PDFreactor pdfReactor = new PDFreactor()
 // ...
 }
 }

 If the headless mode is not enabled on a system without a graphics environment, you might experience an error similar to this:

 java.lang.InternalError: Can't connect to X11 window server using '' as the value of the DISPLAY variable

 Improving Cold Start with OpenJ9 Class Data Sharing

 When running PDFreactor as a command line application, the time required for the cold start of the Java JRE can be a significant portion of the total time
 required to convert a single document. Note that this only really applies when using PDFreactor on the command line, when running PDFreactor as a library
 that is part of larger application or as Web Service, the Java run-time is not likely to go through a cold start each time a PDF is converted.

 To circumvent this, you could leverage the Class Data Sharing feature of the OpenJ9 runtime
 (see Class sharing in Eclipse OpenJ9). Creating and using
 a cache for shared classes will significantly improve the cold start time for the command line. This can improve conversion time up to 30% - 50% for smaller
 documents.

 There is an example (a batch file or a shell script, depending on your installation) on how to use the OpenJ9 runtime in path-to-PDFreactor/bin/openj9. Important: It
 is for reference only and is not intended for productive use. You will have to edit the file and configure the path to your OpenJ9 Java
 executable in order to use it. You may want to use a different set of OpenJ9 parameters depending on your environment and requirements.

 Using the PDFreactor Web Service

 If PDFreactor is deployed using the PDFreactor installer, the installation provides an option to
 automatically install the PDFreactor Web Service with PDFreactor. No further configuration is
 required in this case.

 On Unix and Linux platforms, no installer is available. Therefore, the PDFreactor Web Service must be started manually on these
 systems. To do so, after unzipping the PDFreactor installation archive go to the path-to-PDFreactor/bin
 directory and use this command to start the service:

 ./pdfreactorwebservice start

 To stop the service, use:

 ./pdfreactorwebservice stop

 To display whether the service is already running, use:

 ./pdfreactorwebservice status

 Install PDFreactor Web Service as system.d service

 Alternatively on systems which support system.d you can install PDFreactor as system service as follows:

 After unzipping the PDFreactor installation archive go to the path-to-PDFreactor/bin directory. Then
 issue the following commands:

 cp pdfreactor.service /etc/systemd/system

 systemctl start pdfreactor.service

 systemctl enable pdfreactor.service

 The PDFreactor Web Service can be used by one of the clients (PHP, .NET, Python, Ruby, Java, JavaScript, Node.js and Python
 Command Line) or by using its REST REpresentational State Transfer
 API.

 Checking if the Web Service is Operational

 You can check if the PDFreactor Web Service is operational (i.e. if it can create PDFs) by using the method getStatus in the clients or the REST URL /status
 of the . If the Web Service is not working normally, an
 appropriate exception is thrown when using a client or the status code 503 is returned when using the REST API. In this case you should restart the PDFreactor Web Service.

 Debugging start-up

 If you have problems starting the PDFreactor web service, you can try to debug the start-up process using the following command:

 ./pdfreactorwebservice run

 Asynchronous Conversions

 The PDFreactor Web Service can convert documents asynchronously, meaning that the client is not required to keep an open HTTP
 connection to the server until the conversion is finished. While this is usually negligible when converting small documents, synchronous conversions may be very
 detrimental to the user experience when converting large or complex documents.

 When doing asynchronous conversions, temporary files are created on the server's file system (if not configured otherwise, see). These files are deleted when the document is retrieved by the client (except when the keepDocument property is set in the configuration). Should these documents not be retrieved, they will remain on the server until
 they are automatically deleted after 5 days. It is also save to remove these files via external cleanup mechanics.

 Starting an Asynchronous Conversion

 Converting synchronously is very simple. You send a request for conversion to the server using the convert method and receive
 the result object in the response. Asynchronous conversions on the other hand have to be managed by the integrating application. You can start an
 asynchronous conversion by using the convertAsync method. The response is a unique ID which references the conversion you just
 triggered. The ID is important as it is the only way to check on or retrieve the finished document from the server at a later time.

 // sync
Result result = pdfReactor.convert(config);
// async
String id = pdfReactor.convertAsync(config);

 // sync
Result result = pdfReactor.Convert(config);
// async
String id = pdfReactor.ConvertAsync(config);

 // sync
$result = $pdfReactor->convert($config);
// async
$id = $pdfReactor->convertAsync($config);

 # sync
result = pdfReactor.convert(config);
async
id = pdfReactor.convertAsync(config);

 # sync
result = pdfReactor.convert(config);
async
id = pdfReactor.convertAsync(config);

 // sync
const result = await pdfReactor.convert(config);
// async
const id = await pdfReactor.convertAsync(config);

 // sync
const result = await pdfReactor.convert(config);
// async
const id = await pdfReactor.convertAsync(config);

 # sync
$result = $pdfReactor->convert($config);
async
$id = $pdfReactor->convertAsync($config);

 To convert synchronously, POST your configuration to /convert

 To convert asynchronously, POST your configuration to /convert/async

 Not possible.

 Checking the Progress

 Since after the conversion is triggered you do not have any information on whether it is finished or not, your application needs to poll the progress of the
 conversion. This is done by using the getProgress method, which takes the conversion ID as argument. The returned object
 contains an indicator whether the conversion is finished, the current estimated progress in percent and a partial log, if a log level was configured.

 Progress progress = pdfReactor.getProgress(id);

 Progress progress = pdfReactor.GetProgress(id);

 $progress = $pdfReactor->getProgress($id);

 progress = pdfReactor.getProgress(id)

 progress = pdfReactor.getProgress(id)

 const progress = await pdfReactor.getProgress(id);

 const progress = await pdfReactor.getProgress(id);

 $progress = $pdfReactor->getProgress($id);

 Make a GET request to /progress/{id}

 Not applicable.

 Retrieving the Document

 After the conversion is finished, you can retrieve the document by using the getDocument method, which again takes the
 conversion ID as a parameter. The returned result object is the same as if you had called the convert method in the beginning,
 meaning that it contains the converted document.

 Result result = pdfReactor.getDocument(id);

 Retrieving the document causes it to be deleted from the server if not configured otherwise. See for further information.

 Deleting the Document

 As already mentioned, asynchronously converted documents are stored on the server to be accessible at a later point. To make managing these stored files as
 convenient as possible, by default the document is deleted from the server once it is retrieved for the first time, e.g. by using the method getDocument. Since this might be undesirable in certain cases, it can be prevented by setting the keepDocument
 property of the Configuration object to true.

 config.setKeepDocument(true);

 config.keepDocument = true;

 $config["keepDocument"] = true;

 config['keepDocument'] = True

 config['keepDocument'] = true

 config.keepDocument = true;

 config.keepDocument = true;

 $config["keepDocument"] = true;

 { "keepDocument": "true" }

 Not applicable.

 Once you want to remove the document from the server, call the deleteDocument method with the conversion ID as argument.

 pdfReactor.deleteDocument(id);

 pdfReactor.DeleteDocument(id);

 $pdfReactor->deleteDocument($id);

 pdfReactor.deleteDocument(id)

 pdfReactor.deleteDocument(id)

 pdfReactor.deleteDocument(id);

 pdfReactor.deleteDocument(id);

 $pdfReactor->deleteDocument($id);

 Make a DELETE request to /document/{id}

 Not applicable.

 Using the REST API

 The REST API provides application- and language-neutral access to the PDFreactor Web Service. To use a RESTful resource, your
 application has to open an HTTP connection to the appropriate URL.

 The PDFreactor Web Service offers two REST APIs:

 	

 Conversion API: The conversion API is used to perform conversions.

	

 Monitoring API: The monitoring API is only intended for administrators to observe the service’s load and performance.

 All REST APIs are available under /service unless
 the service is otherwise deployed or configured. RESTful resources respond with an appropriate HTTP status code. Please see the REST API documentation for detailed information.

 RESTful Conversion API

 The conversion API is used to perform and manage document conversions. While the RESTful URLs are not identical to the appropriate client methods, the names are
 recognizable (see for a comparison).

 The RESTful PDFreactor Web Service can be reached at /rest, i.e. via the URL http://localhost:9423/service/rest, unless otherwise deployed or
 configured. The WADL Web Application Description
 Language
 is available under http://localhost:9423/service/rest?_wadl.

 The following table gives a
 comprehensive overview of all available RESTful resources:

 RESTful Resources of the Conversion API	Resource	HTTP method	Description	Headers
	/convert	POST	Converts the specified document into PDF or image.	
	/convert/async	POST	Converts the specified document into PDF or image asynchronously.	Location
	/progress/{id}	GET	Checks the progress of the conversion with the given ID.	Location
	/document/{id}	GET	Retrieves the converted PDF or image.	
	/document/{id}/{page}	GET	Retrieves the specified page of a converted multi-page image.	
	/document/metadata/{id}	GET	Retrieves the metadata of the converted PDF or image.	
	/document/{id}/show/{fileName}	GET	Displays the converted PDF in the browser with the given file name.	
	/document/{id}/download/{fileName}	GET	Triggers a download of the converted PDF with the given file name.	
	/document/bundle	POST	Downloads a ZIP file containing the PDFs with the given IDs and file names.	
	/document/{id}	DELETE	Deletes the converted PDF or image from the server.	
	/schema	GET	Retrieves the JSON schema for all data models consumed or produced by the PDFreactor Web Service.	
	/status	GET	Checks if the REST service is responsive and able to convert documents.	
	/version	GET	Retrieves the version of the PDFreactor Web Service.	

 To convert a document using the RESTful conversion API, the following resource has to be called using the HTTP POST method:

 http://localhost:9423/service/rest/convert

 The PDFreactor configuration must be included in the POST data, either as JSON or XML string.

 Payload

 All POST resources require a payload in XML, JSON or ZIP format. Usually, the payload is the PDFreactor configuration. In case of ZIP, the payload is an
 asset package and contains all resources required to convert it to PDF (see).

 When doing a request, the appropriate Content-type header should be set.

 XML:

 <prws:configuration xmlns:prws="http://webservice.pdfreactor.realobjects.com/">
 <prws:document>https://www.realobjects.com</prws:document>
 </prws:configuration>

 JSON:

 {
 "document": "https://www.realobjects.com"
 }

 Headers

 The RESTful resources /convert/async and /progress/{id} both return a Location
 header, which contains the URL that should be called next.

 The Location header of the /convert/async response contains the complete document URL to
 /progress/{id}, including the id parameter. This makes it very convenient to get the progress after
 triggering an async conversion. The Location header of the /progress/{id} response contains the
 complete document URL to /document/{id}, including the id parameter. This header is only present
 if the conversion is finished, so it can be used to directly access the converted document.

 Data Formats

 Certain resources like /convert or /progress return data in XML format by default. However, you
 can control the data format by either specifying appropriate Accept headers or more conveniently by appending a file extension
 to the REST resource. Not all file extensions are supported for all resources, and some file extensions may behave differently.

 	

 pdf, png, jpg, bmp, tiff, gif – Retrieves the binary data of the converted PDF or image directly. Also, the appropriate
 Content-Type headers are included so that you can display the PDF or image directly in the browser. These file
 extensions are only supported for the /convert and /document resources

	

 bin – Same as above, however, the data is returned as generic binary data with content type "application/octet-stream".

	

 json, xml – The data is returned in JSON or XML format.

	

 txt – The data is returned as plain text. What exactly is returned depends on the resource:

 	

 /progress/{id}.txt returns the current estimated progress in percent

	

 /version.txt returns the full version as a string

	

 /convert.txt or /document/{id}.txt return the converted PDF as a base64 encoded
 string

 To retrieve an asynchronously converted PDF from the server, use the /document resource with the conversion ID "1234" as a
 URL parameter like this:

 http://localhost:9423/service/rest/document/1234

 The resource will return a result object which includes (among other data) the converted PDF as a base64-encoded string. If no file extension is
 given, the data is returned in XML format. If you prefer the data in JSON format, just add the appropriate file extension to the resource:

 http://localhost:9423/service/rest/document/1234.json

 Sometimes it might be desirable to retrieve the PDF directly as binary data or display it in the browser. For this, simply use the "pdf" file
 extension:

 http://localhost:9423/service/rest/document/1234.pdf

 When using the convert or document resources to retrieve the binary data of the converted
 document directly, you can specify an image file extension like jpg even if you retrieve a PDF (and vice-versa). This is
 not recommended. While the returned binary data is the same, an inappropriate "Content-Type" header is set which might confuse some user agents. If you
 do not know whether you retrieve an image or a pdf, use the generic extension bin.

 RESTful Monitoring API

 The monitoring API of the PDFreactor Web Service can be reached at /monitor, i.e. via the URL http://localhost:9423/service/monitor, unless otherwise deployed or
 configured.

 To use the monitoring API, you must configure an admin key. More information about this can be found
 in the section .

 RESTful Resources of the Monitoring API	Resource	HTTP method	Description
	/server	GET	Provides information about the server environment, amount of CPU cores, available memory,
 environment variables, Java system properties and the PDFreactor service. This includes all server parameters (see
) except for the admin key parameters.
	/conversions	GET	Provides an overview of all conversions. This includes queued conversion requests,
 currently running conversions as well as the amount of total conversions and failed conversions.
	/conversions/running	GET	Same as /conversions, but provides only
 information about running conversions.
	/conversions/queued	GET	Same as /conversions, but provides only
 information about queued conversion requests.
	/conversions/finished	GET	Shows the number of conversions that have finished since the server started.
	/conversions/finished/successful	GET	Shows the number of conversions that have successfully finished
 since the server started.
	/conversions/finished/failed	GET	Shows the number of conversions that have failed since the server
 started.

 The monitoring API does not store any conversion information, except for the number of finished and failed conversion. Once the conversion is finished,
 all information about it is lost.

 Asset Packages

 Instead of using a simple configuration to convert an external document, the REST service also accepts an asset package in ZIP format. This package must have a
 configuration.xml or configuration.json file in its root directory. The content of this
 configuration file is a normal configuration in XML or JSON format, except that the document is specified as a URL relative to it. All other resources required
 by the document can also be placed in the asset package and can be linked relatively to the document.

 This is an example asset package structure and configuration.

 configuration.json:

 {
 "document": "input.html",
 "addComments": true,
 "userStyleSheets": [
 {
 "uri": "styles/common.css"
 }
]
}

 The configuration above points to a document that is located in the same directory as the configuration file
 as well as a user style sheet in the styles directory.
 Let's assume the content of the input document looks like this:

 <html>
 <head>
 <link rel="stylesheet" href="styles/document.css">
 <script src="scripts/main.js"></script>
 </head>
 <body>
 <p>Hello World </p>
 </body>
</html>

 The input document also references a style sheet, a script and an image, all located in different directories.
 Files and directories are arbitrary, only the configuration file must be in located the root directory.
 All relative URLs are resolved against the root directory of the Asset Package.

 With the configuration and input document above, the final package structure should look like this:

 myPackage.zip
├ configuration.json
├ input.html
├ styles
│ ├ document.css
│ └ common.css
├ scripts
│ └ main.js
└ images
 └ beach.png

 You could then convert this asset package to PDF using e.g. curl:

 curl -X POST -H "Cache-Control: no-cache" -H "Content-Type: application/zip" --data-binary @myPackage.zip "http://localhost:9423/service/rest/convert.pdf" > result.pdf

 Limitations and Restrictions

 Asset packages are subject to the following limitations and restrictions:

 	

 Asset packages must have a configuration.json or configuration.xml file in their root
 directory.

	
 A document in the asset package must be specified as URL relative to the configuration file.

	
 All relatively linked resources must be put in the asset package.

	
 No base URL can be specified in the configuration.

	
 Relative URLs must not point to locations outside of the asset package.

 Prioritizing Jobs

 By default, the PDFreactor Web Service processes conversion jobs in FIFO order, i.e. in the same order as they arrive,
 although conversion times may of course vary. In addition, synchronous conversions generally have a higher priority
 than asynchronous ones. To prioritize certain jobs, you can specify the requestPriority
 configuration property. Its value determines at which position in the conversion queue the
 new conversion is placed. Greater values mean higher priority.

 If no other priority is specified, the PDFreactor Web Service assigns the following default priorities:

 	
 Synchronous conversions: priority 10

	
 Asynchronous conversions: priority 0

 Downloading Document Bundles

 To download a converted document, you can use the /document/{id} resource with the
 ID of the conversion. This downloads a single conversion result. However, sometimes it can be desirable to
 download multiple converted documents in one request. For this, you can use the
 /document/bundle resource. Note that this resource requires a POST request rather than GET.
 It returns a ZIP file containing the requested documents with file names of your choosing.

 The operation will fail if at least one of the requested documents cannot be found or if the specified file names
 are not unique. If no file name is provided, the service will automatically generate one, by either using
 the documentName configuration property or the conversion ID.

 This is an example POST body to download several converted documents. The name property
 specifies the file name.

 {
 "documents": [
 {
 "id": "899159cc-7440-47e9-bd75-3c9be61bb5e3",
 "name": "November Report.pdf"
 },
 {
 "id": "a912e3e9-23b4-4821-bd1e-e72e1d2ce0b6",
 "name": "December Report.pdf"
 },
 {
 "id": "b9c643e0-5f9d-4843-a9f7-71fbb4f13c89",
 "name": "Projection Next Year.pdf"
 }
]
}

 The resulting ZIP then contains the following files:

 bundle.zip
├ November Report.pdf
├ December Report.pdf
└ Projection Next Year.pdf

 Using a Client

 PDFreactor can also be easily integrated in your web apps using one of the clients, i.e. PHP, .NET, Python, Perl, Ruby,
 Java, JavaScript, Node.js or Python Command Line. This has to be used in conjunction with the PDFreactor Web Service which is
 run by a Jetty web application server (see chapter).

 See also The PDFreactor Web Service
 for information on how to start the service.

 Using PHP

 To use the PDFreactor PHP API simply copy the PDFreactor.class.php to a directory of your
 web server where PHP is enabled.

 Then include the PDFreactor.class.php with:

 include("/path/to/PDFreactor.class.php");

 With just a few lines you can create and show PDFs inside your PHP web application:

 <?php
include("../PDFreactor.class.php");
$pdfReactor = new PDFreactor();
$config = array("document" => "https://www.pdfreactor.com");

try {
 $result = $pdfReactor->convertAsBinary($config);
 header("Content-Type: application/pdf");
 echo $result;
} catch (PDFreactorWebserviceException $e) {
 header("Content-Type: text/html");
 echo "<h1>An Error Has Occurred</h1>";
 echo "<h2>".$e->getMessage()."</h2>";
}
?>

 PDFreactor methods in the PHP API docs for all available options.

 PHP API specific issues

 PHP Script timeout: Generally the timeout of PHP scripts is set to 30s within the php.ini. When rendering large documents
 this limit may be exceeded.

 Using .NET

 You can easily access the PDFreactor service from any .NET language. The library assembly PDFreactor.dll
 offers you a large subset of the Java-API and takes care of all communication with the service.

 A simple usage in C# would be:

 PDFreactor pdfReactor = new PDFreactor();
Configuration config = new Configuration();
config.Document = "https://www.pdfreactor.com/";

try
{
 byte[] pdf = pdfReactor.ConvertAsBinary(config);
}
catch (PDFreactorWebserviceException e)
{
 // ...
}

 PDFreactor methods in the .NET API docs for all available options.

 Using ASP.NET

 To use the .NET API from ASP.NET Active Server Pages .NET, a framework by Mircosoft to build dynamic web sites and web applications
 copy PDFreactor.dll from clients\netstandard2\bin in your PDFreactor
 installation directory to bin in the root of your IIS-Application or to the global assembly cache.

 An ASP.NET example would be:

 <%@ Page Language="C#" Debug="false" %>
<%@ import namespace="RealObjects.PDFreactor.Webservice.Client" %>
<%
PDFreactor pdfReactor = new PDFreactor();
RealObjects.PDFreactor.Webservice.Client.Configuration config =
 new RealObjects.PDFreactor.Webservice.Client.Configuration();
config.Document = "https://www.pdfreactor.com/";

try
{
 byte[] result = pdfReactor.ConvertAsBinary(config);

 Response.ContentType = "application/pdf";
 Response.BinaryWrite(result);
}
catch (PDFreactorWebserviceException e)
{
 Result result = e.Result;
 Response.Write("<h1>Error During Rendering</h1>>");
 Response.Write("<h2>"+result.Error+"</h2>");
}
%>

 Using Python

 To use the PDFreactor Python API simply copy the PDFreactor.py to a directory of your
 web server where Python is enabled (by e.g. CGI or mod-python).

 Then include the PDFreactor.py with:

 import sys
sys.path.append("path/to/PDFreactor.py/")
from PDFreactor import *

 With just a few lines you can create and show PDFs inside your Python web application:

 pdfReactor = PDFreactor()
config = { "document": "https://www.pdfreactor.com" }

try:
 result = pdfReactor.convertAsBinary(config)

 # Used to prevent that newlines are converted to Windows newlines (\n --> \r\n)
 # when using Python on Windows systems
 if sys.platform == "win32":
 import os, msvcrt
 msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)

 print "Content-Type: application/pdf\n"
 sys.stdout.write(result)
except PDFreactorWebserviceException as e:
 print "Content-Type: text/html\n"
 print "<h1>Error During Rendering</h1>"
 print "<h2>"+str(e)+"</h2>"

 To output the PDF directly to the browser please use the following code:

 if sys.platform == "win32":
 import os, msvcrt
 msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)
 print "Content-Type: application/pdf\n"
 sys.stdout.write(result.document)

 PDFreactor methods in the Python API docs for all available options.

 Using Perl

 To use the PDFreactor Perl API simply copy the PDFreactor.pm to a directory of your web server
 where Perl is enabled (by e.g. CGI or mod-perl).

 Then include the PDFreactor.pm with:

 require "PDFreactor.pm";

 With just a few lines you can create and show PDFs inside your Perl web application:

 my $pdfReactor = PDFreactor -> new();
$config = { "document" => "https://www.pdfreactor.com" };

eval {
 $result = $pdfReactor->convertAsBinary($config);

 print "Content-type: application/pdf\n\n";
 binmode(STDOUT);
 print $result;
} || do {
 my $e = $@;

 print "Content-type: text/html\n\n";
 print "<h1>Error During Rendering</h1>";

 if ($e->isa("PDFreactor::PDFreactorWebserviceException")) {
 print "<h2>".$e->{message}."</h2>";
 } else {
 print "<h2>".$e."</h2>";
 }
};

 When outputting the PDF directly to the browser please use the following code before printing the result:

 binmode(STDOUT);

 PDFreactor methods in the Perl API docs for all available options.

 Using Ruby

 To use the PDFreactor Ruby API simply copy the PDFreactor.rb to a directory of your web server
 where Ruby is enabled (by e.g. CGI or mod-ruby).

 Then include the PDFreactor.rb with:

 require 'PDFreactor.rb'

 With just a few lines you can create and show PDFs inside your Ruby web application:

 pdfReactor = PDFreactor.new()
config = { document: "https://www.pdfreactor.com/" }

begin
 result = pdfReactor.convertAsBinary(config);

 print "Content-type: application/pdf\n\n"
 $stdout.binmode
 print result
rescue PDFreactorWebserviceException => e
 print "Content-type: text/html\n\n"
 puts "<h1>Error During Rendering</h1>"
 puts "<h2>#{e}</h2>"
end

 When outputting the PDF directly to the browser please use the following code before printing the result:

 $stdout.binmode

 PDFreactor methods in the Ruby API docs for all available options.

 Using Java

 To use the PDFreactor Java client simply add the pdfreactor-client.jar to your Java
 application's class path.

 With just a few lines you can create PDFs inside your Java application:

 PDFreactor pdfReactor = new PDFreactor();
Configuration config = new Configuration();
config.setDocument("https://www.pdfreactor.com/");

try {
 byte[] result = pdfReactor.convertAsBinary(config);

 // handle the PDF
} catch (PDFreactorWebserviceException e) {
 System.out.println(e.getMessage());
}

 PDFreactor methods in the Java API docs for all available options.

 Using JavaScript/Node.js

 This chapter refers to the JavaScript API that allows using PDFreactor from JavaScript in a browser. There are also:

 	

 JavaScript in the input document, processed by PDFreactor like in a browser

	

 Scripts added to the resulting PDFs, processed by the PDF-viewer

 To use the PDFreactor JavaScript API simply add the PDFreactor.js as a JavaScript to your web
 page or as a module in your Node.js application.

 JavaScript

 <script src="PDFreactor.js" />

 Node.js

 const PDFreactor = require('PDFreactor.js');

 Because the JavaScript and Node.js clients use HTTP requests which are asynchronous by nature, the convert and all other
 API methods that retrieve data from the service return Promises.

 With just a few lines you can create PDFs inside your web page or application:

 pdfReactor = new PDFreactor();
const config = { document: "https://www.pdfreactor.com/" };

try {
 const result = await pdfReactor.convert(config);
 const pdf = result.document;
 // handle the PDF
} catch (e) {
 if (e instanceof PDFreactor.PDFreactorWebserviceError) {
 console.log(e.message);
 }
}

 PDFreactor methods in the JavaScript or Node.js API docs for all available options.

 Using the Python Command Line

 PDFreactor features a Java based command line that uses the Java library
 and a Python based command line web service client which requires the PDFreactor
 Web Service to be running.

 The Python Command Line executable is located in the PDFreactor/clients/cli directory.
 It can be used like this:

 python pdfreactor.py

 See for basic usage as the arguments are mostly identical.

 Batch Processing

 The Python Command Line client can be used to batch convert files by either specifying a directory on your system or using wildcards in the input
 file name.

 python pdfreactor.py -i /directory/documents

 Here all files in the /directory/documents are converted.

 python pdfreactor.py -i /directory/documents/test*.html

 Here all files in the /directory/documents matching the file name are converted.

 Contrary to other clients, the Python Command Line client can also process file paths as input documents (in addition to URLs and content). When
 using file paths, the PDFreactor Web Service must be running on the same system. If not, the file paths cannot be
 accessed.

 Asynchronous conversions are not possible using the Python Command Line client.

 Custom Headers and Cookies

 In certain situations it may be necessary to set custom headers and cookies to the connection from the client to the PDFreactor
 Web Service. This can be done with the connectionSettings.

 If sticky cookies are a requirement (e.g. for
 load balanced scenarios), make sure to use the same instance of the connectionSettings object for each
 request that should use the same sticky session. PDFreactor automatically modifies the connectionSettings
 parameter to include all cookies from the response (and thus any potential load balancer sticky cookies).

 ConnectionSettings connectionSettings = new ConnectionSettings();
connectionSettings.setHeaders(new HashMap<>());
connectionSettings.setCookies(new HashMap<>());
connectionSettings.getHeaders().put("my-header", "my-header-value");
connectionSettings.getCookies().put("my-cookie", "my-cookie-value");
pdfReactor.convert(config, connectionSettings);

 ConnectionSettings connectionSettings = new ConnectionSettings()
{
 Headers = new NameValueCollection(),
 Cookies = new NameValueCollection()
};
connectionSettings.Headers.Set("my-header", "my-header-value");
connectionSettings.Cookies.Set("my-cookie", "my-cookie-value");
pdfReactor.Convert(config, connectionSettings);

 $connectionSettings = array(
 "headers" => array("my-header" => "my-header-value"),
 "cookies" => array("my-cookie" => "my-cookie-value")
)
$pdfReactor->convert($config, $connectionSettings);

 connectionSettings = {
 "headers": { "my-header": "my-header-value" },
 "cookies": { "my-cookie": "my-cookie-value" }
}
pdfReactor.convert(config, connectionSettings)

 connectionSettings = {
 headers: { "my-header" => "my-header-value" },
 cookies: { "my-cookie" => "my-cookie-value" }
}
pdfReactor.convert(config, connectionSettings)

 Note: Make sure to use symbols as property names and strings as header and cookie names and values.

 const connectionSettings = {
 headers: { 'my-header': 'my-header-value' }
}
pdfReactor.convert(config, connectionSettings);

 Note: Setting cookies manually is not possible in JavaScript. It is done automatically by the browser.

 const connectionSettings = {
 headers: { 'my-header': 'my-header-value' },
 cookies: { 'my-cookie': 'my-cookie-value'}
}
pdfReactor.convert(config, connectionSettings);

 my %connectionSettings = {
 headers => { 'my-header' => 'my-header-value' },
 cookies => { 'my-cookie' => 'my-cookie-value' }
}
$pdfReactor->convert($config, \%connectionSettings);

 Note: Make sure to use a hash reference as the connectionSettings object might be modified by PDFreactor.

 Refer to the documentation of your HTTP client on how to set cookies and headers.

 Not possible.

 Web Service Configuration

 The PDFreactor Web Service can be configured in several ways. Most commonly, as described in the chapter , you may want to increase the amount of memory available.

 Increasing Memory

 To increase the amount of memory available to the PDFreactor Web Service, you need to adapt the -Xmx1024m
 parameter in the file PDFreactor/jetty/start.d/main.ini.

 To increase the memory to e.g. 2GB, change the parameter to -Xmx2048m and restart the web service.

 It is recommended to adapt the memory parameter for the PDFreactor Web Service appropriately before going into
 production.

 Increasing Maximum Threads

 The number of maximum threads limits the number of parallel conversions. For machines with multiple CPU cores, this value can be increased to allow more
 parallel conversions. This number is automatically determined by the PDFreactor Web Service. It can also be configured
 manually (see the parameter threadPoolSize in). The
 Jetty application server also has a configured limit of 200 maximum threads which should only be increased if absolutely necessary.

 Keep in mind that more parallel conversions will result in increased memory usage. Please also see the chapter for more information.

 Customizing the Server Configuration

 Sometimes it may be necessary to change the host or port of the PDFreactor Web Service.

 You can change the port in the following of the PDFreactor/jetty/start.d/main.ini:

 …
jetty.http.port=9423
…

 Usually it is recommended to run the PDFreactor Web Service on the same machine as the PDFreactor
 integration. This is not strictly necessary and the host for the service can be changed.

 You have to remove the following line from the PDFreactor/jetty/start.d/main.ini:

 …
jetty.http.host=localhost
…

 This will enable the PDFreactor Web Service to be accessible from other machines. By default, the service is available
 under "http://localhost:9423/service".

 When the PDFreactor Web Service is accessible from other hosts and if it is not secured by
 other means (e.g. firewalls), there are important security implications as explained in
 and particularly in .

 If either the host or port were changed or if you use a completely custom server for the PDFreactor Web Service, you need
 to specify the new service URL in the constructor of the PDFreactor instance.

 PDFreactor pdfReactor = new PDFreactor("http://myServer:9423/service/rest");

 PDFreactor pdfReactor = new PDFreactor("http://myServer:9423/service/rest");

 $pdfReactor = new PDFreactor("http://myServer:9423/service/rest");

 pdfReactor = PDFreactor("http://myServer:9423/service/rest")

 pdfReactor = PDFreactor.new("http://myServer:9423/service/rest")

 pdfReactor = new PDFreactor("http://myServer:9423/service/rest");

 pdfReactor = new PDFreactor("http://myServer:9423/service/rest");

 my $pdfReactor = PDFreactor->new("http://myServer:9423/service/rest");

 python pdfreactor.py -u http://myServer:9423/service/rest -i input.html

 See Docker Configuration on how to specify memory, parallel conversion limits and the port when using the PDFreactor Docker image.

 Accessing the Log

 In addition to the possibilities mentioned in , log information is also available via the log and error properties
 of the Progress object.
 While the log property contains the conversion logs, the error property contains errors that may have occurred during the conversion
 and caused it to be aborted.
 If the conversion is not yet finished, only a partial log will be available.

 Additionally, the entire log output of the Jetty application server is written into log files located in the PDFreactor/jetty/logs
 directory. The server log output can be configured separately using the server parameter.

 Load Balancing

 In high availability and high performance environments it is common to run multiple PDFreactor Web Services behind a load
 balancer.

 When doing synchronous conversions, no additional configuration or settings are required since the request to the web service is completely stateless. When
 doing asynchronous conversions on the other hand, you have to make sure that all relevant requests are routed to the same web service by the load balancer. This
 can usually be achieved by setting a sticky cookie. Please refer to the manual of the load balancer on how exactly to handle sticky sessions. When using a
 client, cookies can be set using the connectionSettings parameter of the PDFreactor instance (see).

 You can set a pre-defined sticky cookie like this:

 ConnectionSettings connectionSettings = new ConnectionSettings();
connectionSettings.setCookies(new HashMap<>());
connectionSettings.getCookies().put("sticky-cookie", "sticky-cookie-value");
String documentId = pdfReactor.convertAsync(config, connectionSettings);
// ...
pdfReactor.getDocument(documentId, connectionSettings);

 ConnectionSettings connectionSettings = new ConnectionSettings()
{
 Cookies = new NameValueCollection()
};
connectionSettings.Cookies.Set("sticky-cookie", "sticky-cookie-value");
string documentId = pdfReactor.ConvertAsync(config, connectionSettings);
// ...
pdfReactor.GetDocument(documentId, connectionSettings);

 $connectionSettings = array(
 "cookies" => array("sticky-cookie" => "sticky-cookie-value")
)
$documentId = $pdfReactor->convertAsync($config, $connectionSettings);
// ...
$pdfReactor->getDocument($documentId, $connectionSettings);

 connectionSettings = {
 "cookies": { "sticky-cookie": "sticky-cookie-value" }
}
documentId = pdfReactor.convertAsync(config, connectionSettings)
...
pdfReactor.getDocument(documentId, connectionSettings)

 connectionSettings = {
 cookies: { "sticky-cookie" => "sticky-cookie-value" }
}
documentId = pdfReactor.convertAsync(config, connectionSettings)
...
pdfReactor.getDocument(documentId, connectionSettings)

 Note: Make sure to use symbols as property names and strings as header and cookie names and values.

 Note: Setting cookies manually is not possible in JavaScript. It is done automatically by the browser.

 const connectionSettings = {
 cookies: { 'sticky-cookie': 'sticky-cookie-value'}
}
const documentId = pdfReactor.convertAsync(config, connectionSettings);
// ...
pdfReactor.getDocument(documentId, connectionSettings);

 my %connectionSettings = {
 cookies => { 'sticky-cookie' => 'sticky-cookie-value' }
}
$documentId = $pdfReactor->convertAsync($config, \%connectionSettings);
...
pdfReactor->getDocument($documentId, \%connectionSettings);

 Note: Make sure to use a hash reference as the connectionSettings object might be modified by PDFreactor.

 Refer to the documentation of your HTTP client on how to set cookies and headers.

 Not possible.

 If the sticky cookie is set by the load balancer, you can leave the
 connectionSettings object empty. PDFreactor will automatically write all
 response cookies into the connectionSettings object so that they are part of
 subsequent requests.

 Server Parameters

 Additional configuration options for the server can be specified for the PDFreactor Web Service. These are parameters the client should not or cannot
 influence. They affect all conversions.

 For a complete list of parameters that can be configured, please see appendix .

 These server parameters can be configured in various ways:

 Java System Properties

 As system properties server parameters have the following form:

 com.realobjects.pdfreactor.webservice.parameterName=parameterValue

 To specify system properties for the PDFreactor Web Service, add them to the section "VM Arguments" in the PDFreactor/jetty/start.d/main.ini file, below the "--exec" line like this:

 -Dcom.realobjects.pdfreactor.webservice.parameterName=parameterValue

 The parameter name must be prefixed with com.realobjects.pdfreactor.webservice.

 Servlet Init Parameters

 Init parameters are specified in the PDFreactor/jetty/contexts/service.xml file. They appear similar to this:

 <Call name="setInitParameter">
 <Arg>com.realobjects.pdfreactor.webservice.parameterName</Arg>
 <Arg>parameterValue</Arg>
</Call>

 The parameter name should be prefixed with com.realobjects.pdfreactor.webservice.

 Environment Variables

 Another way to set server parameters is in form of environment variables. How exactly environment variables are set is dependent on your system, however
 it should be similar to this:

 export PDFREACTOR_PARAMETERNAME=parameterValue

 The parameter name is upper cased and must be prefixed with PDFREACTOR_ and all dots (".") must be converted to
 underscores ("_").

 Configuration File

 Server parameters can also be configured in a special configuration file. For this, create a new file pdfreactorwebservice.config
 at the same location where the pdfreactor-webservice.jar is located, which is usually in the PDFreactor/jetty/lib/ext
 directory. The content of this configuration file is one or more lines, each consisting of the following:

 parameterName=parameterValue

 This format is similar to Java's properties file format.

 Parameter Priority

 Should the same server parameter be specified in multiple ways (e.g. as system property and environment variable), the parameter with the highest
 priority is chosen. The priority is as follows, with the first item having highest priority:

 	
 Configuration file

	
 System property

	
 Environment variable

	
 Servlet init parameter

 Callbacks

 When performing asynchronous conversions, you usually have to regularly poll the progress of these conversions to determine when they are finished. As an
 alternative, you could also use callbacks which will notify you automatically about certain steps of the conversion by performing an HTTP POST request to a
 specified URL. The posted data is either in JSON, XML or plain text format, depending on the content type that is specified for the callback. Some callbacks
 return the same data model as if you had called the appropriate API methods. If the specified format is plain text, the data consists of a small string
 containing only a minimum amount of information.

 The following callback types are available:

 Callbacks	
 Callback type

 	
 Trigger

 	
 Model

 (JSON/XML)

 	
 Model

 (plain text)

 	
 Similar API method

	

 START

 	
 The conversion has started on the server.

 	
 Info

 	
 Document ID

 	
 N/A

	

 FINISH

 	
 The conversion has finished on the server.

 	
 Result

 	
 Document ID

 	

 getDocument

	

 PROGRESS

 	
 The conversion is in progress.

 	
 Progress

 	
 Progress percentage

 	

 getProgress

 If you want to be notified once the conversion is done, this example demonstrates how to add a simple "ping" that just posts the document ID of the finished
 conversion to your serve.

 config.setCallbacks(new Callback()
 .setUrl("http://myServer/myEndpoint1")
 .setType(CallbackType.FINISH)
 .setContentType(ContentType.TEXT));

 config.Callbacks = new List<Callback>
{
 new Callback
 {
 Url = "http://myServer/myEndpoint1",
 Type = CallbackType.FINISH,
 ContentType = ContentType.TEXT
 }
};

 config.callbacks = [{
 url: "http://myServer/myEndpoint1",
 type: PDFreactor.CallbackType.FINISH,
 contentType: PDFreactor.ContentType.TEXT
}];

 config.callbacks = [{
 url: "http://myServer/myEndpoint1",
 type: PDFreactor.CallbackType.FINISH,
 contentType: PDFreactor.ContentType.TEXT
}];

 $config["callbacks"] = array(
 array(
 "url" => "http://myServer/myEndpoint1",
 "type" => CallbackType::FINISH,
 "contentType" => ContentType::TEXT
)
);

 config['callbacks'] = [{
 'url': 'http://myServer/myEndpoint1',
 'type': PDFreactor.CallbackType.FINISH,
 'contentType': PDFreactor.ContentType.TEXT
}]

 config['callbacks'] = [{
 url: 'http://myServer/myEndpoint1',
 type: PDFreactor::CallbackType::FINISH,
 contentType: PDFreactor::ContentType::TEXT
}]

 $config["callbacks"] = [{
 'url' => "http://myServer/myEndpoint1"
 'type' => PDFreactor::CallbackType->FINISH,
 'contentType' => PDFreactor::ContentType->TEXT
}];

 { "callbacks": [{
 "url": "http://myServer/myEndpoint1",
 "type": "FINISH",
 "contentType": "TEXT"
}]}

 -C config.json

 With the following config.json:

 { "callbacks": [{
 "url": "http://myServer/myEndpoint1",
 "type": "FINISH",
 "contentType": "TEXT"
}]}

 The next example demonstrates how to add a PROGRESS callback that will be called every 2 seconds until the conversion is finished.
 The posted data will be in JSON format.

 config.setCallbacks(new Callback()
 .setUrl("http://myServer/myEndpoint2")
 .setType(CallbackType.PROGRESS)
 .setContentType(ContentType.JSON)
 .setInterval(2));

 config.Callbacks = new List<Callback>
{
 new Callback
 {
 Url = "http://myServer/myEndpoint2",
 Type = CallbackType.PROGRESS,
 ContentType = ContentType.JSON,
 Interval = 2
 }
};

 config.callbacks = [{
 url: "http://myServer/myEndpoint2",
 type: PDFreactor.CallbackType.PROGRESS,
 contentType: PDFreactor.ContentType.JSON,
 interval: 2
}];

 config.callbacks = [{
 url: "http://myServer/myEndpoint2",
 type: PDFreactor.CallbackType.PROGRESS,
 contentType: PDFreactor.ContentType.JSON,
 interval: 2
}];

 $config["callbacks"] = array(
 array(
 "url" => "http://myServer/myEndpoint2",
 "type" => CallbackType::PROGRESS,
 "contentType" => ContentType::JSON,
 "interval" => 2
)
);

 config['callbacks'] = [{
 'url': 'http://myServer/myEndpoint2',
 'type': PDFreactor.CallbackType.PROGRESS,
 'contentType': PDFreactor.ContentType.JSON,
 'interval': 2
}]

 config['callbacks'] = [{
 url: 'http://myServer/myEndpoint2',
 type: PDFreactor::CallbackType::PROGRESS,
 contentType: PDFreactor::ContentType::JSON,
 interval: 2
}]

 $config["callbacks"] = [{
 'url' => "http://myServer/myEndpoint2"
 'type' => PDFreactor::CallbackType->PROGRESS,
 'contentType' => PDFreactor::ContentType->JSON,
 'interval' => 2
}];

 { "callbacks": [{
 "url": "http://myServer/myEndpoint2",
 "type": "PROGRESS",
 "contentType": "JSON",
 "interval": 2
}]}

 -C config.json

 With the following config.json:

 { "callbacks": [{
 "url": "http://myServer/myEndpoint2",
 "type": "PROGRESS",
 "contentType": "JSON",
 "interval": 2
}]}

 Monitoring

 Server administrators may wish to monitor the PDFreactor Web Service and gain access to conversion statistics or server
 specifics. This can be done via the .

 JSON Configuration Files

 Some configuration data is too complex to be packed into a single string, so certain require a URL or
 path to a JSON file which then contains the configuration data in JSON format. These parameters usually map certain configuration properties
 that are only available in the Java library,
 e.g. the server parameter behaves exactly as the configuration
 property connectionRules of the securitySettings.

 To map the Java configuration property to JSON format, use the following rules:

 	A single object in Java maps to a JSON object

	A list or array in Java maps to a JSON array of JSON objects

	Java setter methods map to JSON properties by removing the prefix "set" and lowercasing the following character

	Java Enums map to simple strings in JSON using the same value

 Consider the following Connection Rule in Java:

 new SecuritySettings()
 .setConnectionRules(
 new ConnectionRule()
 .setName("My Rule")
 .setAction(ConnectionSecurityAction.ALLOW)
 .setHost("**.pdfreactor.com")
);

 Since the Java property connectionRules is a list of connection rules instead of a single object,
 the JSON format then looks like this:

 [
 {
 "name": "My Rule",
 "action": "ALLOW",
 "host": "**.pdfreactor.com"
 }
]

 Using the Command Line Application

 PDFreactor comes with a command line interface for easy integration in shell scripts or batch files.
 It is included in the pdfreactor.jar which is located in the
 PDFreactor/lib directory. For Windows systems a compiled version is provided which
 is located in the PDFreactor/bin directory. It can be used like this:

 java -jar pdfreactor.jar -i input.html -o output.pdf

 For a full list of all arguments and parameters, use the following command:

 java -jar pdfreactor.jar --help

 When using the Windows executable or the Python Command Line client, replace
 java -jar pdfreactor.jar with
 pdfreactor.exe and
 python pdfreactor.py, respectively.

 Standard input and output

 The Java command line interface supports standard input and output (stdin and stdout).
 To read from stdin, you have to specify the input argument as "stdin".
 To write to stdout, you have to specify the output argument as "stdout".

 Reading from stdin:

 java -jar pdfreactor.jar -i stdin -o output.pdf < input.html

 Writing to stdout:

 java -jar pdfreactor.jar -i input.html -o stdout > output.pdf

 Combining both:

 java -jar pdfreactor.jar -i stdin -o stdout < input.html > output.pdf

 API Comparison

 The following table shows a comparison between the API methods available in the Java library, in clients and as RESTful resources of the . Please note that depending on
 the client language, the method signature might be slightly different.

 API Comparison	
 Java library

 	
 Client

 	
 REST resource

 (HTTP method)

 	
 Description

	
 convert(Configuration)

 	
 convert(Configuration)

 	
 /convert

 (POST)

 	
 Converts the input document to PDF or image synchronously

	
 convert(Configuration, OutputStream)

 	

 Not available

 	

 Not available

 	
 Converts the input document to PDF or image synchronously and writes it directly in the OutputStream

	

 Not available

 	
 convertAsBinary(Configuration)

 	
 /convert.pdf

 (POST)

 	
 Converts the input document to PDF or image synchronously and returns the binary data directly

	

 Not available

 	
 convertAsBinary(Configuration, Stream)

 	
 /convert.pdf

 (POST)

 	
 Converts the input document to PDF or image synchronously and streams the binary data directly to the given stream

	

 Not available

 	
 convertAsync(Configuration)

 	
 /convert/async

 (POST)

 	
 Converts the input document to PDF or image asynchronously

	

 Not available

 	
 getProgress(id)

 	
 /progress/{id}

 (GET)

 	
 Checks the progress of an asynchronous conversion

	

 Not available

 	
 getDocument(id)

 	
 /document/{id}

 (GET)

 	
 Retrieves the converted PDF or image

	

 Not available

 	
 getDocumentAsBinary(id)

 	
 /document/{id}.bin

 (GET)

 	
 Retrieves the converted PDF or image directly as binary data

	

 Not available

 	
 getDocumentMetadata(id)

 	
 /document/metadata/{id}

 (GET)

 	
 Retrieves the metadata of the converted PDF or image

	

 Not available

 	

 Not available

 	
 /document/{id}/{page}

 (GET)

 	
 Retrieves the specified page of a converted multi-page image directly as binary data

	

 Not available

 	
 deleteDocument(id)

 	
 /document/{id}

 (DELETE)

 	
 Deletes the converted PDF or image from the server

	

 Not available

 	
 getStatus()

 	
 /status

 (GET)

 	

 Checks if the PDFreactor Web Service is responsive and able to convert

	
 VERSION

 	
 getVersion()

 	
 /version

 (GET)

 	

 Gets the version of PDFreactor

 The API /document/{id}/{page} is only available in REST. In the Java library and the clients, you can simply access the appropriate
 entry of the array property documentArray of the Result object.

 Some methods do not return anything directly (e.g. deleteDocument and getStatus), however, all methods
 throw appropriate exceptions. RESTful resources respond with appropriate status codes.

 The method getVersion does not exist in the API of the Java library, here the version is available as the constant VERSION.

 What API Method Should I Use?

 When using PDFreactor Web Service clients, you have several convert API methods (or RESTful resources) at your disposal.
 Depending on the use case, some API methods are more efficient than others.

 Small Documents

 Simple Case

 Small and simple documents are best converted using the convertAsBinary API method. This method is the most efficient
 since the document is returned as binary data without any additional overhead.

 Since the PDF data is streamed as
 soon as it is available, it is not possible for PDFreactor to relay errors to the client that occur while writing the PDF.
 For full error handling use convert or convertAsync instead.

 Complex Case

 For more complex documents you should use the convert API method. This returns a result object containing the document as
 a base64-encoded string, as well as a log, number of pages and exceeding content information. When using this method, the PDF document is converted and
 stored in-memory. It also has slightly more overhead but the result object contains helpful information about the conversion.

 Large Documents

 When converting large documents, you should convert asynchronously using the convertAsync API method. This has several
 advantages: Firstly, the connections to the server are closed directly after receiving the conversion request, thus avoiding keeping connections open for
 extended periods of time which is timeout and error prone. Secondly the client's integration does not block during the conversion and you have more control
 over when to retrieve the converted document. Lastly the document is stored on the file system of the server, so it does not allocate any memory.

 Logging

 PDFreactor can produce a detailed log of the entire conversion. To enable logging you have to set an appropriate log level first using the
 configuration property logLevel, e.g. like this:

 config.setLogLevel(LogLevel.WARN);

 config.LogLevel = LogLevel.WARN;

 $config["logLevel"] = LogLevel::WARN;

 config['logLevel'] = PDFreactor.LogLevel.WARN

 config['logLevel'] = PDFreactor::LogLevel::WARN

 config.logLevel = PDFreactor.LogLevel.WARN;

 config.logLevel = PDFreactor.LogLevel.WARN;

 $config["logLevel"] = PDFreactor::LogLevel->WARN;

 { "logLevel": "WARN" }

 --logLevel WARN

 To retrieve the logs, use the log property of the Result object. This gives you a Log object and
 access to the following logs:

 	Main log
	The main log contains all relevant log information for that conversion. It can be accessed via the records
 property of a Log object.
	CSS log
	This log contains detail information for certain CSS warnings or errors. Those may occur in abbreviated form in the main log but are usually
 not critical for the conversion. It can be accessed via the recordsCss property.
	JavaScript log
	PDFreactor logs JavaScript output similar to a browser. While it is also available in the main log, the JavaScript log provides a more comprehensive
 and machine-readable access to the output. It can be accessed via the recordsJs property.

 Additionally, you can retrieve the logs using appropriate debug settings. Refer to for more information.

 Examples

 The following examples show how to enable logging by setting an appropriate log level and then appending the log to the generated PDF.

 Configuration config = new Configuration();
config.setLogLevel(LogLevel.DEBUG);
config.setDebugSettings(new DebugSettings()
 .setAppendLogs(true));

 Configuration config = new Configuration
{
 LogLevel = LogLevel.DEBUG,
 DebugSettings = new DebugSettings
 {
 AppendLogs = true
 }
};

 $config = array(
 logLevel => LogLevel::DEBUG,
 debugSettings => array(
 appendLogs => true
)
);

 config = {
 'logLevel': PDFreactor.LogLevel.DEBUG,
 'debugSettings': {
 appendLogs: True
 }
}

 config = {
 logLevel: PDFreactor::LogLevel::DEBUG,
 debugSettings: {
 appendLogs: true
 }
}

 config = {
 logLevel: PDFreactor.LogLevel.DEBUG,
 debugSettings: {
 appendLogs: true
 }
}

 config = {
 logLevel: PDFreactor.LogLevel.DEBUG,
 debugSettings: {
 appendLogs: true
 }
}

 $config = {
 'logLevel' => PDFreactor::LogLevel->DEBUG,
 'appendLogs' => true
}

 { "logLevel": "DEBUG", "debugSettings": { "all": true }}

 -d

 Conversion Name

 You can specify an arbitrary name for each conversion using the conversionName configuration property. This name will be logged as the
 first and last line in each conversion log. This makes it easy to match a conversion log to a particular document.

 Log Capacity

 During the course of the conversion, PDFreactor stores several messages in internal logs so that they
 can be accessed afterwards. Those internal logs have a limited capacity. By default, each log
 stores 100 000 entries. This should be sufficient for most documents. In the rare cases where
 this number needs to be adjusted, you can use the configuration property logMaxLines
 like this:

 config.setLogMaxLines(100);

 config.LogMaxLines = 100;

 $config["logMaxLines"] = 100;

 config['logMaxLines'] = 100

 config['logMaxLines'] = 100

 config.logMaxLines = 100;

 config.logMaxLines = 100;

 $config["logMaxLines"] = 100;

 { "logMaxLines": 100 }

 --logMaxLines 100

 If the log capacity is exceeded, the oldest entries will be removed to make room for the new ones.

 License Key

 Evaluation Mode

 Without a license key PDFreactor runs in evaluation mode. In evaluation mode it is possible to integrate and test PDFreactor just like the full version but
 the resulting PDF document will include watermarks and additional evaluation pages.

 Receiving a License Key

 To obtain a license key, please visit the PDFreactor website (https://www.pdfreactor.com). It provides
 information about all available licenses and how to receive license keys.

 Setting the License Key

 RealObjects provides you a license key file in XML format.

 The license key can be set as a string using the licenseKey configuration property.

 String licensekey = "<license>... your license ...</license>";
config.setLicenseKey(licensekey);

 string licensekey = "<license>... your license ...</license>";
config.LicenseKey = licensekey;

 $licensekey = "<license>... your license ...</license>";
$config["licenseKey"] = $licensekey;

 licensekey = "<license>... your license ...</license>"
config['licenseKey'] = licensekey

 licensekey = "<license>... your license ...</license>"
config['licenseKey'] = licensekey

 const licensekey = "<license>... your license ...</license>";
config.licenseKey = licensekey;

 const licensekey = "<license>... your license ...</license>";
config.licenseKey = licensekey;

 $licensekey = "<license>... your license ...</license>";
$config["licenseKey"] = $licensekey;

 { "licenseKey": "<license>... your license ...</license>" }

 --licenseKey "<license>... your license ...</license>"

 You can ensure that no eval or license notices are added to PDF documents using an appropriate error policy:

 config.setErrorPolicies(ErrorPolicy.LICENSE);

 config.ErrorPolicies = new List<ErrorPolicy> { ErrorPolicy.LICENSE };

 $config["errorPolicies"] = array(ErrorPolicy::LICENSE);

 config['errorPolicies'] = [PDFreactor.ErrorPolicy.LICENSE]

 config['errorPolicies'] = [PDFreactor::ErrorPolicy::LICENSE]

 config.errorPolicies = [PDFreactor.ErrorPolicy.LICENSE];

 config.errorPolicies = [PDFreactor.ErrorPolicy.LICENSE];

 $config["errorPolicies"] = [PDFreactor::ErrorPolicy->LICENSE];

 { "errorPolicies": ["LICENSE"] }

 --errorPolicies LICENSE

 This forces PDFreactor to throw an exception instead of adding notices to PDF documents (see).

 Setting the License Key in the Web Service

 For integrators that use the PDFreactor Web Service with either one of the clients or the REST API, it may be useful to
 not set the license key in their client-side integration. In this case, you can just copy the licensekey.txt file to the PDFreactor/jetty/lib/ext directory (where the pdfreactor.jar and the pdfreactor-webservice.jar
 files are located). PDFreactor will scan for a license key file in that location and use it if one is found.

 See Docker Configuration on how to deploy a license key when using the PDFreactor Docker image.

 Observing Document Content

 When converting documents into PDF, it may be desirable to programmatically observe certain parts of the document content to ensure that the PDF result is as
 excepted. This can be especially important for highly dynamic input documents for which the result might not have been validated prior to the conversion.

 There are currently two parts of the content that can be observed: Exceeding content and missing resources. Exceeding content observes content that overflows
 certain boundaries, missing resources observes all resources that could not be loaded during conversion.

 All content observed this way is logged in the normal PDFreactor log. In addition to that, it is logged in separate, machine-parsable logs which can be retrieved
 and analyzed after the conversion has finished to verify the result.

 A content observer can be configured like this:

 ContentObserver contentObserver = new ContentObserver();
// set up contentObserver, see below...
config.setContentObserver(contentObserver);

 ContentObserver contentObserver = new ContentObserver();
// set up contentObserver, see below...
config.ContentObserver = contentObserver;

 $contentObserver = array();
// set up contentObserver, see below...
$config["contentObserver"] = $contentObserver;

 contentObserver = {}
set up contentObserver, see below...
config['contentObserver'] = contentObserver

 contentObserver = {}
set up contentObserver, see below...
config['contentObserver'] = contentObserver

 const contentObserver = {};
// set up contentObserver, see below...
config.contentObserver = contentObserver;

 $contentObserver = array();
// set up contentObserver, see below...
$config["contentObserver"] = $contentObserver;

 $contentObserver = array();
set up contentObserver, see below...
$config["contentObserver"] = $contentObserver;

 { "contentObserver": {set up contentObserver, see below...} }

 -C config.json

 With the following config.json:

 { "contentObserver": {set up contentObserver, see below...} }

 Exceeding Content

 Content that does not fit into its pages can be logged as well as programmatically analyzed. This functionality is enabled and configured by using the
 content observer and requires two arguments:

 The first one specifies what to analyze:	Constant	Description
	ExceedingContentAnalyze.NONE	Disable this functionality (default)
	ExceedingContentAnalyze.CONTENT	Analyze content (text and images) only
	ExceedingContentAnalyze.CONTENT_AND_BOXES	Analyze content as well as boxes. (catches exceeding borders and backgrounds)
	ExceedingContentAnalyze.CONTENT_AND_STATIC_BOXES	Analyze content as well as boxes, except for those with absolute or relative positioning

 The second one specifies how to analyze:	Constant	Description
	ExceedingContentAgainst.NONE	Disable this functionality (default)
	ExceedingContentAgainst.PAGE_BORDERS	Find content exceeding the actual edges of the page
	ExceedingContentAgainst.PAGE_CONTENT	Find content exceeding the page content area. (avoids content extending into the page margins)
	ExceedingContentAgainst.PARENT	Find content exceeding its parent (i.e. any visible overflow)

 For example:

 contentObserver
 .setExceedingContentAnalyze(ExceedingContentAnalyze.CONTENT_AND_STATIC_BOXES)
 .setExceedingContentAgainst(ExceedingContentAgainst.PAGE_CONTENT);

 contentObserver.ExceedingContentAnalyze = ExceedingContentAnalyze.CONTENT_AND_STATIC_BOXES;
contentObserver.ExceedingContentAgainst = ExceedingContentAgainst.PAGE_CONTENT;

 $contentObserver["exceedingContentAnalyze"] = ExceedingContentAnalyze::CONTENT_AND_STATIC_BOXES;
$contentObserver['exceedingContentAgainst"] = ExceedingContentAgainst::PAGE_CONTENT;

 contentObserver['exceedingContentAnalyze'] = PDFreactor.ExceedingContentAnalyze.CONTENT_AND_STATIC_BOXES
contentObserver['exceedingContentAgainst'] = PDFreactor.ExceedingContentAgainst.PAGE_CONTENT

 contentObserver['exceedingContentAnalyze'] = PDFreactor::ExceedingContentAnalyze::CONTENT_AND_STATIC_BOXES
contentObserver['exceedingContentAgainst'] = PDFreactor::ExceedingContentAgainst::PAGE_CONTENT

 contentObserver.exceedingContentAnalyze = PDFreactor.ExceedingContentAnalyze.CONTENT_AND_STATIC_BOXES;
contentObserver.exceedingContentAgainst = PDFreactor.ExceedingContentAgainst.PAGE_CONTENT;

 contentObserver.exceedingContentAnalyze = PDFreactor.ExceedingContentAnalyze.CONTENT_AND_STATIC_BOXES;
contentObserver.exceedingContentAgainst = PDFreactor.ExceedingContentAgainst.PAGE_CONTENT;

 $contentObserver["exceedingContentAnalyze"] = PDFreactor::ExceedingContentAnalyze->CONTENT_AND_STATIC_BOXES;
$contentObserver['exceedingContentAgainst"] = PDFreactor::ExceedingContentAgainst->PAGE_CONTENT;

 { "exceedingContentAnalyze": "CONTENT_AND_STATIC_BOXES",
 "exceedingContentAgainst": "PAGE_CONTENT" }

 -C config.json

 With the following config.json:

 { "contentObserver": {
 "exceedingContentAnalyze": "CONTENT_AND_STATIC_BOXES",
 "exceedingContentAgainst": "PAGE_CONTENT" }}

 To programmatically process the results you can get an array of ExceedingContent objects using the property exceedingContents.
 Please see the API documentation for details on this class.

 Missing Resources

 To ensure that all resources referenced in the input document (or in other resources) are loaded, configure the content observer like this:

 contentObserver.setMissingResources(true);

 contentObserver.MissingResources = true;

 $contentObserver["missingResources"] = true;

 contentObserver['missingResources'] = True

 contentObserver['missingResources'] = true

 contentObserver.missingResources = true;

 contentObserver.missingResources = true;

 $contentObserver["missingResources"] = true;

 { "missingResources": true }

 -C config.json

 With the following config.json:

 { "contentObserver": {
 "missingResources": true }}

 After the conversion, you can access and analyze a log containing all missing resources using the property missingResources. It
 returns an array of MissingResource objects which contains the resource description, type (e.g. style sheet, image, etc.) as well
 as a description why the resource is missing. If the log is null, no resources are missing. Please see the API documentation for
 details on this class.

 Connections

 It is also possible to log all connections or connection attempts performed by PDFreactor. For this, configure the content
 observer like this:

 contentObserver.setConnections(true);

 contentObserver.Connections = true;

 $contentObserver["connections"] = true;

 contentObserver['connections'] = True

 contentObserver['connections'] = true

 contentObserver.connections = true;

 contentObserver.connections = true;

 $contentObserver["connections"] = true;

 { "connections": true }

 -C config.json

 With the following config.json:

 { "contentObserver": {
 "connections": true }}

 A log containing all connections or connection attempts can be accessed after the conversion via the connections property. It
 returns an array of Connection objects which contain data about the connection. For HTTP connections, the data includes the status
 code as well as request and response headers. Please see the API documentation for details on this class.

 Please note that connections that were blocked due to security settings are not included in this log since
 PDFreactor blocked the connection before even attempting to open it.

 Error Policies

 It is possible to adjust PDFreactor's default error policy. Depending on the configured policy, the conversion will now fail if
 certain criteria are met. The following error policies can be set and will terminate the conversion:

 	

 LICENSE The conversion will now fail if no full license key is set. This ensures that generated PDFs won't contain any
 evaluation watermarks.

	

 MISSING_RESOURCE The conversion will now fail if any resources could not be loaded. If a detailed list of missing resources is
 required, use an appropriate ContentObserver (see)
 instead.

 Error policies can be set like this:

 config.setErrorPolicies(
 ErrorPolicy.LICENSE,
 ErrorPolicy.MISSING_RESOURCE);

 config.ErrorPolicies = new List<ErrorPolicy>
{
 ErrorPolicy.LICENSE,
 ErrorPolicy.MISSING_RESOURCE
};

 $config["errorPolicies"] = array(
 ErrorPolicy::LICENSE,
 ErrorPolicy::MISSING_RESOURCE);

 config['errorPolicies'] = [
 PDFreactor.ErrorPolicy.LICENSE,
 PDFreactor.ErrorPolicy.MISSING_RESOURCE]

 config['errorPolicies'] = [
 PDFreactor::ErrorPolicy::LICENSE,
 PDFreactor::ErrorPolicy::MISSING_RESOURCE]

 config.errorPolicies = [
 PDFreactor.ErrorPolicy.LICENSE,
 PDFreactor.ErrorPolicy.MISSING_RESOURCE];

 config.errorPolicies = [
 PDFreactor.ErrorPolicy.LICENSE,
 PDFreactor.ErrorPolicy.MISSING_RESOURCE];

 $config["errorPolicies"] = [
 PDFreactor::ErrorPolicy->LICENSE,
 PDFreactor::ErrorPolicy->MISSING_RESOURCE];

 { "errorPolicies": ["LICENSE", "MISSING_RESOURCE"] }

 --errorPolicies LICENSE MISSING_RESOURCE

 Limiting Conversion Times

 To limit conversion times and to prevent certain inputs to cause extremely long or even
 indefinite conversion times, you can specify timeouts. If a timeout is
 exceeded, the conversion will be aborted.

 Conversion times can be limited by specifying a conversionTimeout in seconds.

 config.setConversionTimeout(30);

 config.ConversionTimeout = 30;

 $config["conversionTimeout"] = 30;

 config['conversionTimeout'] = 30

 config['conversionTimeout'] = 30

 config.conversionTimeout = 30;

 config.conversionTimeout = 30;

 $config["conversionTimeout"] = 30;

 { "conversionTimeout": 30 }

 --conversionTimeout 30

 To specifically limit JavaScript processing times, see JavaScript Timeout.

 To limit resource loading times, see Resource Timeout. These timeouts
 will not cause the conversion to abort.

 Development and Debugging Tools

 Debug Settings

 When integrating PDFreactor, especially during the trial and development phases, it might be useful to retrieve debugging information about the conversion. The most
 convenient way to do this is by enabling the various debugging tools of PDFreactor. This can be done in the configuration like this:

 config.setDebugSettings(new DebugSettings().setAll(true));

 config.DebugSettings = new DebugSettings { All: true };

 $config["debugSettings"] = array("all" => true);

 config['debugSettings'] = { "all": True }

 config['debugSettings'] = { "all": true }

 config.debugSettings = { all: true };

 config.debugSettings = { all: true };

 $config["debugSettings"] = { "all" => true };

 { "debugSettings": { "all": true }}

 -d

 This causes PDFreactor to do the following:

 	
 Set the log level to the most verbose level, i.e. LogLevel.PERFORMANCE.

	
 Append logs to the generated PDF with that log level. Can be controlled with the appendLogs property of the DebugSettings
 object.

	
 Attach various debug files to the generated PDF. Can be controlled with the
 attachConfiguration, attachDocuments,
 attachResources, and attachLogs properties of the DebugSettings object.

	
 No longer throw any exceptions. Instead, in case of an exception, a text
 document is returned that contains the conversion log as well as the exception that would have been thrown.
 Can be controlled with the forceResult property of the DebugSettings object.

 The following debug files are attached by default:

 Debug Files	Group	Attachment URL	File	Description
	documents	#,
#originalsource	OriginalSource.txt	The original input document
	#finalsource	FinalSource.txt	The input document after XSLT preprocessing
	#originaldocument	OriginalDocument.txt	The initially parsed input document
	#originaldocumentpp	OriginalDocumentPP.txt	A pretty-printed version of the above
	#finaldocument	FinalDocument.txt	The input document after all modifications (JavaScript etc.) are completed
	#finaldocumentpp	FinalDocumentPP.txt	A pretty-printed version of the above
	configuration	#configuration	Configuration.txt	The configuration object passed to the PDFreactor instance
	ClientConfiguration.txt	The configuration object sent to the PDFreactor Web Service (if used)
	resources	#resources	Resources.dat	All used external resources like style sheets, scripts, images etc. as a ZIP file
	logs	#log	Log.txt	The main PDFreactor conversion log
	#logcss	LogCss.txt	The PDFreactor CSS log
	#logjavascript	LogJavaScript.txt	The PDFreactor JavaScript log
	#systemproperties	SystemProperties.txt	A list of the current Java system properties
	#connections	Connections.txt	A log of all URL connection attempts performed by PDFreactor
	#missingresources	MissingResources.txt	A log of all resources that could not be loaded

 	Debug settings are intended for investigation purposes only and not for production use. Activating some or all debug settings
 		may change other configuration properties, such as the log level.
 		This is done for convenience to get the most verbose result when debugging.

 Controlling Debug Behavior

 If only specific debugging tools are required, instead of setting the all property, you can
 use the appropriate debug settings to enable the desired setting manually. The following
 properties are available:

 	all — Activates all of the following debugging tools

	attachDocuments — Attaches all debug files belonging to the group "documents"

	attachResources — Attaches all debug files belonging to the group "resources"

	attachLogs — Attaches all debug files belonging to the group "logs"

	appendLogs — Appends the PDFreactor log to the generated PDF

	forceResult — Forces PDFreactor to return a result even if an exception occurred during the conversion

 Debug File Dump

 In certain cases where no converted document could be created (e.g. when a specific PDF/A conformance could not be achieved) it may
 be helpful to have access to the debug files mentioned previously. To do this, it is possible to specify a local directory
 when configuring the debug settings. If such a directory is specified, PDFreactor will attempt to write all available debug files
 as a single ZIP into that directory. The local directory can be specified like this:

 config.setDebugSettings(new DebugSettings()
 .setAll(true)
 .setLocalDirectory(Paths.get("c:\\debug")));

 Use the debugLocalDir server parameter to configure the location.

 Use the debugLocalDir server parameter to configure the location.

 Use the debugLocalDir server parameter to configure the location.

 Use the debugLocalDir server parameter to configure the location.

 Use the debugLocalDir server parameter to configure the location.

 Use the debugLocalDir server parameter to configure the location.

 Use the debugLocalDir server parameter to configure the location.

 Use the debugLocalDir server parameter to configure the location.

 -d c:\debug

 Note: This is only available in the Java CLI.
 For the Python CLI, use the debugLocalDir server parameter to configure the location.

 PDFreactor will create a ZIP file with the naming scheme

 PDFreactor-dump-yyyy-MM-dd-HH-mm-ss-SSS

 where yyyy-MM-dd-HH-mm-ss-SSS represents the serialized date of the dump.

 When using the PDFreactor Web Service, the local directory property is not available. Instead, use
 the corresponding server parameter debugLocalDir (see).

 Attaching Debug Files Manually

 If you only want specific debug files attached, you can forgo enabling the debugging tools entirely and use the
 feature to make PDFreactor attach the appropriate file. For that, use the URLs mentioned in the Debug Files table.

 Inspectable Documents

 To create inspectable documents that can be used with the PDFreactor Inspector application, use the
 inspectableSettings configuration option like this:

 config.setInspectableSettings(new InspectableSettings()
 .setEnabled(true));

config.InspectableSettings = new InspectableSettings
{
 Enabled = true
};

 config.inspectableSettings = {
 enabled: true
};

 config.inspectableSettings = {
 enabled: true
};

 $config["inspectableSettings"] = array(
 "enabled" => true
);

 config['inspectableSettings'] = {
 'enabled': True
}

 config['inspectableSettings'] = {
 enabled: true
}

 $config["inspectableSettings"] = {
 'enabled' => true
};

 { "inspectableSettings": {
 "enabled": true
}}

 Shorthand:

 -I

 Longhand:

 -C config.json

 With the following config.json:

 { "inspectableSettings": {
 "enabled": true
}}

 A license key is required to enable the creation of inspectable documents.

 Creating inspectable documents increases the conversion time and may require additional memory.

 Docker Configuration

 Java Options

 When using the PDFreactor Docker image, Java arguments such as memory and Java system properties can be specified by passing an environment variable called JAVA_OPTIONS to the container on startup.
 If you are using Docker Compose, you can also specify the JAVA_OPTIONS environment variable using the environment key in your compose file.

 Additional Configuration

 The internal directory /ro/config is used for various configurations for the Docker container, so it is recommended that you mount this directory. The following can be configured by
 simply deploying files in this config directory:

 	License key
	
 A license key can be deployed to /ro/config/licensekey.txt so that it is automatically loaded by the container.

	Custom fonts
	
 PDFreactor automatically loads fonts in the /ro/config/fonts directory and subdirectories.

	Server parameters
	
 Instead of using Java system properties or environment variables, server parameters can also be specified in a
 configuration file which will automatically be loaded when deployed to /ro/config/pdfreactorwebservice.config.

 A Docker Compose file that configures memory, maximum parallel conversions and the port as well as a configuration directory could like like this:

 version: "2"
services:
 pdfreactor:
 image: realobjects/pdfreactor
 container_name: pdfreactor
 ports:
 - "80:9423"
 volumes:
 - /your/config:/ro/config
 environment:
 JAVA_OPTIONS: >
 -Xmx2g
 -Dcom.realobjects.pdfreactor.webservice.threadPoolSize=4

 Security

 PDFreactor converts HTML or XML documents which can contain external style sheets, scripts, images or other resources.
 Depending on the use case, these documents and resources may come from untrusted sources, such as third-party users.
 This means they might contain malicious code or content which may be used to access private resources through
 Server-Side Request Forgery.

 To protect against potential attacks, PDFreactor has a security layer in place which restricts certain functionality
 and filters URLs according to configurable security settings via the configuration properties securitySettings
 and customUrlStreamHandlers, with the latter only available in the Java library.

 When using the PDFreactor Web Service, use appropriate "securitySettings" server parameters instead of
 configuration properties to configure the security settings. Please note that for custom connection rules, you have to specify
 a URL or path to an external JSON file. is not available in the PDFreactor Web Service.

 Depending on your use case and processing chain, you should consider supplementing the security features offered by
 PDFreactor with your own security measures that can protect your system e.g. on the network layer (such as firewalls),
 which is beyond the scope of PDFreactor.

 Connection Security

 Whenever PDFreactor attempts a URL connection to a source from an untrusted security context, the URL is vetted
 against certain criteria before the connection is opened.

 Trusted and Untrusted Contexts

 PDFreactor distinguishes between two security contexts when applying the security settings: Trusted and untrusted.
 The PDFreactor API (i.e. the configuration object that is passed to the convert methods)
 is considered a trusted security context, because usually only integrators have access to it.
 Any documents or resources that are specified there are not subject to the connection security, although
 still works. So no matter how you configure the connection security settings,
 resources specified in configuration properties such as document, userStyleSheets,
 baseUrl etc. are always allowed because it is assumed they have been set by the integrator.

 Please note that this is not transitive. Even though user style sheets and user scripts are always allowed, resources that they
 load, e.g. via "@import" rule or XHR are subject to the connection security.

 System fonts can also always be loaded, however they can be disabled separately.

 All other resources, especially those that are part of the input document which is potentially produced by untrusted third parties,
 are vetted according to the configured security settings.

 Untrusted Clients

 When using PDFreactor as a publicly available service or in certain other scenarios, PDFreactor processes configurations that may
 not have been specified by the integrator or that come from user machines which are by default
 untrusted environments. Additionally, if at any point in your processing chain it is possible for third parties to inject
 code or content into the configuration object, then the entire configuration object should be considered untrusted.

 This is also the case when your PDFreactor integration code is executed on client machines (e.g. when using a JavaScript
 integration). In this case, your integration code is vulnerable and should not be considered safe.

 To protect yourself, you can use the untrustedApi property to configure the security layer
 in such a way that PDFreactor treats the API as an untrusted context. This means that all security checks are also applied
 to any resources specified in the PDFreactor configuration object, including the input document. In addition to that,
 server-specific information is omitted from the logs.

 Automatic Redirects

 By default, PDFreactor follows redirects automatically. You can disable this with the
 allowRedirects property:

 config.setSecuritySettings(new SecuritySettings()
 .setAllowRedirects(false));

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Connection Rules

 You can define security rules that either deny or allow connections to certain resources. These rules support wildcard patterns for
 their hosts and paths. Each rule also has a priority. Rules are evaluated in order of their priority, starting with the highest priority
 value. If rules have the same priority, they are evaluated in the same order as they were inserted in the API. The priority is
 0 by default.

 If a resource is not matched by any of the rules (or if there are no rules), the default security behavior
 is applied.

 If multiple resource properties of a rule such as protocol, host, port or path
 are specified, the resource must match all of the defined properties.

 When PDFreactor vets resource paths according to security policies, it normalizes the path, ignoring
 any query parameters and the fragment component. Additionally, relative path segments are resolved and
 non-URI characters are URL encoded.
 So for the purposes of path vetting, the path

 /part/../resource path/file?param=value#fragment

 is normalized to

 /resource%20path/file

 Both the host and the path in connection rules support wildcard patterns, meaning that you can substitute characters for
 the "?" or "*" characters. "?" represents a single wildcard character while "*" represents any single wildcard
 path segment (when used in the path property) or one domain label (when used in the host property).
 If you want to represent zero or any number of path segments or domain labels, use "**" instead.

 Important: Invalid URI characters (according to RFC 2396) must be URL encoded for path segments!

 The matching of hosts is always case-insensitive. The matching of paths is case-insensitive, unless the
 property caseSensitivePath of the connection rule is set to true.

 Note that path patterns must always start with a slash.

 This example illustrates how to allow connections to the internal host "company-cms" as well as connections
 to certain paths of a publicly available CDN. All other connections are automatically denied.

 config.setSecuritySettings(new SecuritySettings()
 .setConnectionRules(
 new ConnectionRule()
 .setAction(ConnectionRuleAction.ALLOW)
 .setName("Allow internal company CMS")
 .setHost("company-cms"),
 new ConnectionRule()
 .setAction(ConnectionRuleAction.ALLOW)
 .setName("Allow public company CDN")
 .setProtocol("https")
 .setHost("cdn.company.com"),
 .setPath("/public%20assets/**") // Encode invalid URI characters
 new ConnectionRule()
 .setAction(ConnectionRuleAction.DENY)
 .setName("Deny all")
 .setPath("/**")
 .setPriority(-1) // Make sure this rule is evaluated last
)
);

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 The pattern

 *.pdfreactor.com

 matches the hosts

 cloud.pdfreactor.com
www.pdfreactor.com

 but not

 pdfreactor.com
www.cloud.pdfreactor.com

 To match these hosts as well, you could use

 **.pdfreactor.com

 To allow only CSS files, more specifically files with the extension "css", regardless of the host and path,
 you could use the following path pattern:

 /**/*.css

 To ensure that no URLs can be accessed, you can deny all URLs with a rule:

 config.setSecuritySettings(new SecuritySettings()
 .setConnectionRules(
 new ConnectionRule()
 .setAction(ConnectionRuleAction.DENY)
 .setName("Deny all")
 .setPath("/**")
 .setPriority(-1)
)
);

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Make sure to set the path property to "/**", so that it works for URL types that do not have a host
 (such as file URLs).

 In this case, still allow resources inside the package to be accessed.

 Refer to the chapter for more information on how to configure rules in JSON format
 for the PDFreactor Web Service.

 	Data URIs and Blobs

 Data URIs and Blobs are not subject to connection security, and thus cannot be blocked by connection rules since this would be impractical.
 The single exception is the allowedProtocols setting which can be used to block data URIs or Blobs altogether by
 not allowing the "data" or "blob" protocol, respectively.

 	JAR URLs

 	When using JAR URLs, security rules apply only to the URL to the JAR file, not the whole JAR URL. When the security settings allow
 		access to a JAR file, access is also automatically granted to all of its entries. You can control access to certain JAR entries by using the
 		entry property of a connection rule. Entries are treated as paths, so you can use wildcard notation.

 		

 	The following rule grants access to all resources inside the "resources" directory in a specific JAR file. Since an entry
 		is specified, the rule does not grant access to the JAR file itself. Also note that the protocol is "file" and not "jar",
 		since rules apply to the URL to the JAR file and not the whole URL.

	
	 config.setSecuritySettings(new SecuritySettings()
 .setConnectionRules(
 new ConnectionRule()
 .setAction(ConnectionRuleAction.ALLOW)
 .setName("Allow access to resources inside a JAR")
 .setProtocol("file")
 .setPath("/path/to/my.jar")
 .setEntry("/resources/**")
)
);

	 Use the securitySettings server parameters to configure security.

	 Use the securitySettings server parameters to configure security.

	 Use the securitySettings server parameters to configure security.

	 Use the securitySettings server parameters to configure security.

	 Use the securitySettings server parameters to configure security.

	 Use the securitySettings server parameters to configure security.

	 Use the securitySettings server parameters to configure security.

	 Use the securitySettings server parameters to configure security.

	 Use the securitySettings server parameters to configure security.

	 Use the securitySettings server parameters to configure security.

	

	 The example above would grant access to e.g. the resource:

	 jar:file:///path/to/my.jar!/resources/image.png

	

 		
 		
	 If an entry is specified for any connection rule, the rule will no longer apply to the URL itself, only the entry. This means that
	 	specifying an entry on rules to non-JAR files makes them useless.

	

 Default Security Behavior

 The default security behavior is applied to any URL to which no connection rule matched.
 The appropriate configuration properties are grouped in the defaults property of the securitySettings.
 Checks are applied in the following order:

 	allowSameBasePath
	
 This property is considered true if not specified.

 When a document is converted from URL or a base URL is specified, access to resources
 within the same base path is allowed. No further security checks will be made for that resource.
 Please note that this allows for HSTS, i.e. when the base or document URL is HTTP, then resources within
 the same base path using HTTPS are also allowed.

 This check is always skipped if the untrustedApi property is true.

 If a resource is within the same base path, it is allowed. Otherwise, subsequent default checks below
 are applied.

 The base path is the normalized part of the URL leading to the input document (or the base URL if specified), up to
 the last slash.
 For HTTP or HTTPS URLs, the base Path consists of at least the host, even if the URL does not end with a slash.
 For file URLs, it is ensured that the base Path is never the root directory.

 For example, if the following URL is the input URL of your document:

 http://myServer/document.html

 Then the base path is the following URL:

 http://myServer/

	allowProtocols
	
 This property is considered to have the values "http", "https",
 "data" and "blob" if not specified.

 A list of URL protocols (as lower-case strings) that are allowed. If the protocol of a resource is not
 contained within this list, the resource is not loaded.
 Note that the "file" protocol is not handled by this setting. Use
 allowFileSystemAccess to allow or restrict file URLs.

 If the resource's protocol is not allowed, the resource is denied. Otherwise, subsequent
 default checks below are applied.

	allowFileSystemAccess
	
 This property is considered false if not specified.

 Allows access to the file system. This is prohibited by default.

 If a resource points to a file and file system access is not allowed, the resource is denied. Otherwise, subsequent
 default checks below are applied.

	allowAddresses
	
 This property is considered to have the values PUBLIC, PRIVATE and LOCAL
 if not specified.

 Allows connections to a certain type of host or IP address. Possible values are:

 	PUBLIC: Public hosts or IP addresses.

	PRIVATE: Hosts in private networks or IP addresses in the private range.

	LOCAL: Hosts or IP addresses pointing to the local machine.

	LINK_LOCAL: Link-local addresses or auto-IPs which are usually assigned automatically
 and are usually not used to provide any useful resources for the conversion. Unless explicitly required,
 it is recommended to not grant access to this type of address.

 If a resource points to a network address that is not allowed, the resource is denied.

 When using JAR URLs, the URL to the JAR file is also validated against file system access, allowed protocols as well as
 allowed addresses. Security rules only apply to the URL to the JAR file.

 To allow global file system access, you could use the following default settings. This is not recommended when processing
 content from untrusted sources!

 config.setSecuritySettings(new SecuritySettings()
 .setDefaults(new SecurityDefaults()
 .setAllowFileSystemAccess(true)));

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Custom URL Filtering

 To further filter URLs, you can implement custom URLStreamHandlers
 java.net.URLStreamHandler for
 specific protocols. These are used before the internal security checks are made. It is also possible to register such a handler
 for all protocols, in this case use an asterisk for the protocol in the API. Only one CustomUrlStreamHandler can be used for
 a particular protocol. If more are specified, the first one is used. If one for a specific protocol and one for all protocols is
 defined, the one for the specific protocol is always used.

 Please note that this feature is only available in the Java (non-Web Service) API.

 config.setCustomUrlStreamHandlers(
 new CustomUrlStreamHandler()
 .setProtocol("file")
 .setHandler(new URLStreamHandler() {
 // your implementation
 })
);

 Not possible.

 Not possible.

 Not possible.

 Not possible.

 Not possible.

 Not possible.

 Not possible.

 Not possible.

 Not possible.

 Not possible.

 config.setCustomUrlStreamHandlers(
 new CustomUrlStreamHandler()
 .setProtocol("*")
 .setHandler(new URLStreamHandler() {
 // your implementation
 })
);

 Not possible.

 Not possible.

 Not possible.

 Not possible.

 Not possible.

 Not possible.

 Not possible.

 Not possible.

 Not possible.

 Not possible.

 External XML Parser Resources

 By default, PDFreactor does not load external resources during XML parsing, such as DTDs, entities or XIncludes.
 To allow this for documents, you can use the allowExternalXmlParserResources property of
 the SecuritySettings.

 config.setSecuritySettings(new SecuritySettings()
 .setAllowExternalXmlParserResources(true));

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Controlling Client Access

 Restricting Service Access

 When your PDFreactor Web Service is accessible for a large number of clients or is located in a public cloud, it may be desirable
 to restrict access to it so that only authorized clients can use the API. This can be done with so called "API keys". API keys are arbitrary strings that clients
 must send with each request, otherwise the request will be rejected.

 API keys can be configured via the server parameters (see) apiKeys
 or apiKeysPath. The first parameter specifies a comma separated list of API keys. The latter one specifies the path to a file apikeys.json. That file contains a single JSON object with API keys as keys and a description of the API key as value. This is
 useful if you use lots of different API keys for different clients and want to have an overview of which API key is used for which client.

 To gain access, clients must always send a valid API key with each request. When using one of the clients, an API key can be conveniently set like this
 (Java example):

 pdfReactor.setApiKey("myApiKey");

 pdfReactor.setApiKey("myApiKey");

 pdfReactor.ApiKey = "myApiKey";

 $pdfReactor["apiKey"] = "myApiKey";

 pdfReactor['apiKey'] = "myApiKey"

 pdfReactor['apiKey'] = "myApiKey"

 pdfReactor.apiKey = "myApiKey";

 pdfReactor.apiKey = "myApiKey";

 $pdfReactor->{apiKey} = "myApiKey";

 When using the REST API directly, the API key must always be included in the URL as a query parameter:

 /rest/version?apiKey=myApiKey

 Not possible.

 Please note that this does not make integrations that run on the client (such as JavaScript) secure.

 Restricting API Access

 Usually when clients use a PDFreactor Web Service, they have access to the full client-side PDFreactor API. However, and
 especially when the client is untrusted, you may not always want to grant clients access to the full API since this may
 expose certain server or application-specific information (such as appended logs). To block access to certain parts of the API,
 you can specify an Override Configuration at the server side in JSON format. All properties that are specified there (and
 that are non-null) will override similar properties in the client configuration. This means that you can not only
 specify default values, but also essentially lock certain properties.

 This example shows how a Override Configuration should look like
 to prevent clients from using the debug mode (remember to override the deprecated properties as well)
 and to add attachments.

 {
 "debugSettings": {},
 "enableDebugMode": false,
 "appendLog": false,
 "attachments": []
}

 The server parameter is used to specify a URL to such an Override Configuration JSON
 file.

 Refer to the chapter for more information on mapping Java classes to JSON format.

 Enabling Administrative Access

 Certain RESTful APIs of the PDFreactor Web Service (such as the
 Monitoring API)
 require you to configure an admin key
 to be able to use them. Otherwise these APIs are not accessible at all.
 An admin key can be configured via Server Parameters,
 more specifically via adminKey or
 adminKeyPath.

 The admin key can be an arbitrary string and is used similar to an
 API key. To send the admin key, it has to be
 appended as query parameter "adminKey" to the request URL like this:

 http://localhost:9423/service/monitor/server?adminKey=yourAdminKey

 Hiding Version Information

 While information about the used PDFreactor version can be generally useful, disclosing version information can give
 potential attackers knowledge of the underlying system who may then develop attacks targeting a specific version of
 PDFreactor. To hide version information, use the security setting
 hideVersionInfo.

 config.setSecuritySettings(new SecuritySettings()
 .setHideVersionInfo(true));

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 Use the securitySettings server parameters to configure security.

 The version as well as other system or server information may also be included in the PDFreactor logs which can be embedded in or attached to the
 resulting PDF using . To make sure that PDFs do not contain
 this information, integrators must ensure that the PDFreactor API is properly restricted
 or not accessible to clients.

 Input Formats

 PDFreactor can process the following input formats. By default, it automatically tries to identify the right format.
 The input format of the source document can be overridden using the documentType configuration property.

 HTML + CSS

 HTML is rendered by PDFreactor using a default CSS style sheet for HTML in addition to the document's style.

 HTML is parsed by the built-in HTML5 parser which parses the document according to HTML5 rules. This means that elements missing closing tags (such as <p> without </p>) are handled as demanded by the HTML5 specifications.
 SVG Elements should be used without having their namespace specified.

 See and on how to load additional CSS that is not originally part of the input document.

 You can force HTML processing like this:

 config.setDocumentType(Doctype.HTML5);

 config.DocumentType = Doctype.HTML5;

 $config["documentType"] = Doctype::HTML5;

 config['documentType'] = PDFreactor.Doctype.HTML5

 config['documentType'] = PDFreactor::Doctype::HTML5

 config.documentType = PDFreactor.Doctype.HTML5;

 config.documentType = PDFreactor.Doctype.HTML5;

 $config["documentType"] = PDFreactor::Doctype->HTML5;

 { "documentType": "HTML5" }

 --documentType HTML5

 Legacy XHTML

 It is also possible, albeit discouraged, to enable the legacy XHTML parser and its cleanup processes. You can force this document type like this:

 config.setDocumentType(Doctype.XHTML);

 config.DocumentType = Doctype.XHTML;

 $config["documentType"] = Doctype::XHTML;

 config['documentType'] = PDFreactor.Doctype.XHTML

 config['documentType'] = PDFreactor::Doctype::XHTML

 config.documentType = PDFreactor.Doctype.XHTML;

 config.documentType = PDFreactor.Doctype.XHTML;

 $config["documentType"] = PDFreactor::Doctype->XHTML;

 { "documentType": "XHTML" }

 --documentType XHTML

 In legacy XHTML, there are various cleanup tools at your disposal that will attempt to repair non-well-formed XHTML documents:

 	CYBERNEKO (default)
	JTIDY
	TAGSOUP
	NONE (no cleanup)

 You can set a cleanup tool like this:

 config.setCleanupTool(Cleanup.TAGSOUP);

 config.CleanupTool = Cleanup.TAGSOUP;

 $config["cleanupTool"] = Cleanup::TAGSOUP;

 config['cleanupTool'] = PDFreactor.Cleanup.TAGSOUP

 config['cleanupTool'] = PDFreactor::Cleanup::TAGSOUP

 config.cleanupTool = PDFreactor.Cleanup.TAGSOUP;

 config.cleanupTool = PDFreactor.Cleanup.TAGSOUP;

 $config["cleanupTool"] = PDFreactor::Cleanup->TAGSOUP;

 { "cleanupTool": "TAGSOUP" }

 --cleanupTool TAGSOUP

 HTML + JavaScript

 PDFreactor can also process JavaScript contained or linked in the HTML document. JavaScript processing is disabled by default and has to be enabled first. See
 for further details.

 JavaScript processing is only possible when converting HTML, not XML.

 See on how to load additional JavaScript that is not originally part of the input document.

 XML + CSS

 Like HTML, XML documents can be styled via CSS. Because XML does not have a default CSS style sheet, you will have to provide one for your specific XML language.

 Alternatively or in addition to directly styling the XML content it can be processed by the built-in XSLT Extensible
 Stylesheet Language Transformations (https://www.w3.org/TR/xslt)
 processor, either to modify it or to convert it to HTML.

 You can force XML processing like this:

 config.setDocumentType(Doctype.XML);

 config.DocumentType = Doctype.XML;

 $config["documentType"] = Doctype::XML;

 config['documentType'] = PDFreactor.Doctype.XML

 config['documentType'] = PDFreactor::Doctype::XML

 config.documentType = PDFreactor.Doctype.XML;

 config.documentType = PDFreactor.Doctype.XML;

 $config["documentType"] = PDFreactor::Doctype->XML;

 { "documentType": "XML" }

 --documentType XML

 XML + XSLT

 PDFreactor can optionally transform XML documents using XSLT style sheets. This can transform the document into other formats such as HTML.
 As with the normal input document, PDFreactor attempts to detect the document type of the post-transformation document. This can
 be overridden by using the postTransformationDocumentType.

 The configuration property xsltMode is used to enable XSLT processing.

 config.setPostTransformationDocumentType(Doctype.HTML5);
config.setXsltMode(true);

 config.PostTransformationDocumentType = Doctype.HTML5;
config.XsltMode = true;

 $config["postTransformationDocumentType"] = Doctype::HTML5;
$config["xsltMode"] = true;

 config['postTransformationDocumentType'] = PDFreactor.Doctype.HTML5
config['xsltMode'] = True

 config['postTransformationDocumentType'] = PDFreactor::Doctype::HTML5
config['xsltMode'] = true

 config.postTransformationDocumentType = PDFreactor.Doctype.HTML5;
config.xsltMode = true;

 config.postTransformationDocumentType = PDFreactor.Doctype.HTML5;
config.xsltMode = true;

 $config["postTransformationDocumentType"] = PDFreactor::Doctype->HTML5;
$config["xsltMode"] = true;

 { "postTransformationDocumentType": "HTML5", "xsltMode": true }

 --postTransformationDocumentType HTML5 --xsltMode

 See on how to load additional XSLT style sheets that are not originally part of the input document.

 Encoding

 PDFreactor automatically detects the encoding of the input document, however the encoding can also be forced to a specific value, e.g. like this:

 config.setEncoding("UTF-8");

 config.Encoding = "UTF-8";

 $config["encoding"] = "UTF-8";

 config['encoding'] = 'UTF-8'

 config['encoding'] = 'UTF-8'

 config.encoding = "UTF-8";

 config.encoding = "UTF-8";

 $config["encoding"] = "UTF-8";

 { "encoding": "UTF-8" }

 --encoding "UTF-8"

 CSS Validation

 PDFreactor validates CSS, ignoring unknown properties and property values with invalid syntax. The cssSettings configuration
 property is used to adjust PDFreactor's default behavior by constructing a CssSettings object. This object has two properties,
 each one responsible for a different aspect of CSS validation:

 	validationMode
	
 Adjusts the CSS property validation behavior. This effects how PDFreactor validates CSS property–value
 combinations when parsing style sheets. The default value is HTML_THIRD_PARTY.

	supportQueryMode
	
 Adjusts the CSS property support behavior. This effects how PDFreactor interprets the validity of
 CSS property–value combinations in CSS "@supports" queries or via JavaScript. The default value is HTML.

 Both of these properties are configured using one of the constants below:

 	ALL
	
 Indicates that all style declarations are considered valid
 disregarding the possibility of improper rendering.

 Valid values may be overwritten by invalid style declarations.

	HTML
	
 Indicates that all values set in style declarations will be
 validated as long as PDFreactor supports the corresponding
 property.

 Style declarations for properties not supported
 by PDFreactor are taken as invalid.

	HTML_THIRD_PARTY
	
 Indicates that all values set in style declarations will be
 validated as long as PDFreactor supports the corresponding
 property.

 Style declarations for properties not supported
 by PDFreactor but by third party products are taken as valid.

	HTML_THIRD_PARTY_LENIENT
	
 Indicates that all values set in style declarations will be
 taken as valid if a third party product supports the corresponding
 property.

 Style declarations for properties not supported by
 any third party product but supported by PDFreactor will be validated.

 config.setCssSettings(new CssSettings()
 .setValidationMode(CssPropertySupport.ALL)
 .setSupportQueryMode(CssPropertySupport.ALL));

 config.CssSettings = new QuirksSettings
{
 ValidationMode = CssPropertySupport.ALL,
 SupportQueryMode = CssPropertySupport.ALL
};

 config.cssSettings = {
 validationMode: PDFreactor.CssPropertySupport.ALL,
 supportQueryMode: PDFreactor.CssPropertySupport.ALL
}

 config.cssSettings = {
 validationMode: PDFreactor.CssPropertySupport.ALL,
 supportQueryMode: PDFreactor.CssPropertySupport.ALL
}

 $config["cssSettings"] = array(
 "validationMode" => CssPropertySupport::ALL,
 "supportQueryMode" => CssPropertySupport::ALL
);

 config['cssSettings'] = {
 'validationMode': PDFreactor.CssPropertySupport.ALL,
 'supportQueryMode': PDFreactor.CssPropertySupport.ALL
}

 config['cssSettings'] = {
 validationMode: PDFreactor::CssPropertySupport::ALL,
 supportQueryMode: PDFreactor::CssPropertySupport::ALL
}

 $config["cssSettings"] = {
 'validationMode' => PDFreactor::CssPropertySupport->ALL,
 'supportQueryMode' => PDFreactor::CssPropertySupport->ALL
};

 { "cssSettings": {
 "validationMode": "ALL",
 "supportQueryMode": "ALL"
}}

 -C config.json

 With the following config.json:

 { "cssSettings": {
 "validationMode": "ALL",
 "supportQueryMode": "ALL"
}}

 Quirks Mode

 Legacy HTML versions may have different CSS processing or layout rules. To be compatible, PDFreactor offers various quirks settings to adjust
 its behavior appropriately. This can be done with the quirksSettings configuration property. It takes an object with the following
 properties:

 	caseSensitiveClassSelectors
	
 By default in HTML CSS class selectors are case sensitive.

 In the default DETECT mode this behavior is disabled for old HTML doctypes or when there is no doctype.

	minLineHeightFromContainer
	
 By default the line-height of text containers, e.g. paragraph elements, is used as the minimum line-height of their lines.

 In the default DETECT mode this behavior is disabled for old HTML doctypes or when there is no doctype.

 Each of these properties is configured with a QuirksMode constant to enable or disable it independently of the document:

 	STANDARDS
	
 Forced no-quirks (i.e. standard compliant) behavior.

	QUIRKS
	
 Forced quirks behavior.

	DETECT
	
 Doctype dependent behavior.

 config.setQuirksSettings(new QuirksSettings()
 .setCaseSensitiveClassSelectors(QuirksMode.QUIRKS);

 config.QuirksSettings = new QuirksSettings
{
 CaseSensitiveClassSelectors = QuirksMode.QUIRKS
};

 config.quirksSettings = {
 caseSensitiveClassSelectors: PDFreactor.QuirksMode.QUIRKS
}

 config.quirksSettings = {
 caseSensitiveClassSelectors: PDFreactor.QuirksMode.QUIRKS
}

 $config["quirksSettings"] = array(
 "caseSensitiveClassSelectors" => QuirksMode::QUIRKS
);

 config['quirksSettings'] = {
 'caseSensitiveClassSelectors': PDFreactor.QuirksMode.QUIRKS
}

 config['quirksSettings'] = {
 caseSensitiveClassSelectors: PDFreactor::QuirksMode::QUIRKS
}

 $config["quirksSettings"] = {
 'caseSensitiveClassSelectors' => PDFreactor::QuirksMode->QUIRKS
};

 { "quirksSettings": {
 "caseSensitiveClassSelectors": "QUIRKS"
}}

 -C config.json

 With the following config.json:

 { "quirksSettings": {
 "caseSensitiveClassSelectors": "QUIRKS"
}}

 Resource Loading

 PDFreactor automatically loads linked external resources, e.g. from tags like <link>, etc. If the respective server does not respond within 60 seconds, loading of the resource will be aborted and it will not be
 included in the document.

 For documents including relative resources, like

 ...

 <link href="../css/layout.css" rel="stylesheet" type="text/css" />

 PDFreactor needs a base URL Uniform Resource
 Locator (https://www.w3.org/Addressing/)
 to resolve these resources. If your input document source is a URL, the base URL will be set automatically. In all other cases you have to specify it manually:

 config.setBaseUrl("https://someServer/public/");

 config.BaseUrl = "https://someServer/public/";

 $config["baseUrl"] = "https://someServer/public/";

 config['baseUrl'] = "https://someServer/public/"

 config['baseUrl'] = "https://someServer/public/"

 config.baseUrl = "https://someServer/public/";

 config.baseUrl = "https://someServer/public/";

 $config["baseUrl"] = "https://someServer/public/";

 { "baseUrl": "https://someServer/public/" }

 --baseUrl "https://someServer/public/"

 It is also possible to specify file URLs:

 config.setBaseUrl("file:///directory/");

 config.BaseUrl = "file:///c:/directory/";

 $config["baseUrl"] = "file:///directory/";

 config['baseUrl'] = "file:///directory/"

 config['baseUrl'] = "file:///directory/"

 config.baseUrl = "file:///directory/";

 config.baseUrl = "file:///directory/";

 $config["baseUrl"] = "file:///directory/";

 { "baseUrl": "file:///directory/" }

 --baseUrl "file:///directory/"

 Timeout

 Resource loading timeouts can be customized. Timeouts in milliseconds can be configured
 via the resourceConnectTimeout
 and resourceReadTimeout configuration options.

 The connect timeout is the timeout in establishing the initial connection to the resource server,
 the read timeout is the timeout in downloading the resource from the server (after establishing the connection).

 These timeouts can be configured like this:

 config.setResourceConnectTimeout(1000);
config.setResourceReadTimeout(1000);

 config.ResourceConnectTimeout = 1000;
config.ResourceReadTimeout = 1000;

 $config["resourceConnectTimeout"] = 1000;
$config["resourceReadTimeout"] = 1000;

 config['resourceConnectTimeout'] = 1000
config['resourceReadTimeout'] = 1000

 config['resourceConnectTimeout'] = 1000
config['resourceReadTimeout'] = 1000

 config.resourceConnectTimeout = 1000;
config.resourceReadTimeout = 1000;

 config.resourceConnectTimeout = 1000;
config.resourceReadTimeout = 1000;

 $config["resourceConnectTimeout"] = 1000;
$config["resourceReadTimeout"] = 1000;

 { "resourceConnectTimeout": "1000",
 "resourceReadTimeout": 1000 }

 --resourceConnectTimeout 1000 --resourceReadTimeout 1000

 HTTPS

 PDFreactor supports resource loading from HTTPS and will automatically verify the target SSL certificate. Sometimes this can lead
 to PDFreactor refusing the connection due to issues with the certificate. If this certificate is still trustworthy (e.g. because
 the target is located in the intranet) or during the development phase, you can configure PDFreactor to use a more lenient
 approach and ignore many certificate issues.
 This can be done with the httpsMode configuration property like this:

 config.setHttpsMode(HttpsMode.LENIENT);

 config.HttpsMode = HttpsMode.LENIENT;

 $config["httpsMode"] = HttpsMode::LENIENT;

 config['httpsMode'] = PDFreactor.HttpsMode.LENIENT

 config['httpsMode'] = PDFreactor::HttpsMode::LENIENT

 config.httpsMode = PDFreactor.HttpsMode.LENIENT;

 config.httpsMode = PDFreactor.HttpsMode.LENIENT;

 $config["httpsMode"] = PDFreactor::HttpsMode->LENIENT;

 { "httpsMode": "LENIENT" }

 --httpsMode "LENIENT"

 Authentication

 When resources are behind basic or digest authentication, PDFreactor can automatically send appropriate HTTP headers to gain access.
 You can specify the username and the password for the credentials via the authenticationCredentials configuration
 property like this:

 config.setAuthenticationCredentials(
 new KeyValuePair("username", "password"));

 config.AuthenticationCredentials =
 new KeyValuePair("username", "password");

 $config["authenticationCredentials"] =
 array(
 "key" => "username",
 "value" => "password"
);

 config['authenticationCredentials'] =
 { 'key': "username", 'value': "password" }

 config['authenticationCredentials'] =
 { key: "username", value: "password" }

 config.authenticationCredentials =
 { key: "username", value: "password" };

 config.authenticationCredentials =
 { key: "username", value: "password" };

 $config["authenticationCredentials"] =
 { "key" => "username", "value" => "password" };

 { "authenticationCredentials":
 { "key": "username", "value": "password" }
}

 -C config.json

 With the following config.json:

 { "authenticationCredentials":
 { "key": "username", "value": "password" }
}

 HTTP Headers and Cookies

 Sometimes external resources require additional HTTP headers or cookies, especially when trying to access
 session-specific resources. PDFreactor will always send all configured headers and cookies when requesting
 resources. HTTP headers can be specified via the requestHeaders configuration property and
 cookies via cookies.

 Resource servers may have a white list of user agents to which they deliver content. While
 PDFreactor always sends a default user agent header, it can be overridden if necessary.

 config.setRequestHeaders(
 new KeyValuePair("User-Agent", "MyApp/2.0"));

 config.RequestHeaders = new List<KeyValuePair>
{
 new KeyValuePair("User-Agent", "MyApp/2.0")
};

 $config["requestHeaders"] = array(
 array(
 "key" => "User-Agent",
 "value" => "MyApp/2.0"
)
);

 config['requestHeaders'] = [
 { 'key': "User-Agent", 'value': "MyApp/2.0" }
]

 config['requestHeaders'] = [
 { key: "User-Agent", value: "MyApp/2.0" }
]

 config.requestHeaders = [
 { key: "User-Agent", value: "MyApp/2.0" }
];

 config.requestHeaders = [
 { key: "User-Agent", value: "MyApp/2.0" }
];

 $config["requestHeaders"] = [
 { "key" => "User-Agent", "value" => "MyApp/2.0" }
];

 { "requestHeaders": [
 { "key": "User-Agent", "value": "MyApp/2.0" }
]}

 -C config.json

 With the following config.json:

 { "requestHeaders": [
 { "key": "User-Agent", "value": "MyApp/2.0" }
]}

 A common use case for a custom cookie are session cookies that need to be sent
 for each resource request so that PDFreactor has access to a user's session.
 This is relevant when PDFreactor is integrated into a session-based
 web application. Usually, you would have to find a way to read the session
 cookies. The example uses a static example value instead.

 config.setCookies(
 new KeyValuePair("JSESSIONID", "123456789"));

 config.Cookies = new List<KeyValuePair>
{
 new KeyValuePair("JSESSIONID", "123456789")
};

 $config["cookies"] = array(
 array(
 "key" => "JSESSIONID",
 "value" => "123456789"
)
);

 config['cookies'] = [
 { 'key': "JSESSIONID", 'value': "123456789" }
]

 config['cookies'] = [
 { key: "JSESSIONID", value: "123456789" }
]

 config.cookies = [
 { key: "JSESSIONID", value: "123456789" }
];

 config.cookies = [
 { key: "JSESSIONID", value: "123456789" }
];

 $config["cookies"] = [
 { "key" => "JSESSIONID", "value" => "123456789" }
];

 { "cookies": [
 { "key": "JSESSIONID", "value": "123456789" }
]}

 -C config.json

 With the following config.json:

 { "cookies": [
 { "key": "JSESSIONID", "value": "123456789" }
]}

 URL Rewrites

 PDFreactor can rewrite all URLs before connections to resources are even opened. This is done via the
 urlRewriteSettings configuration property. This object takes one or more rules according
 to which URLs are rewritten. The new URLs are then used to open the connections.

 URL rewrite rules take a regular expression pattern and a substitution. The substitution can include
 group identifiers and back references.

 The following sample rewrites all URLs beginning with "http://myOldHost/" to URLs that
 begin with "https://myNewHost/".

 config.setUrlRewriteSettings(new UrlRewriteSettings()
 .setRules(
 new UrlRewriteRule()
 .setPattern("^http://myOldHost/(.*)$")
 .setSubstitution("https://myNewHost/$1")
)
);

 config.UrlRewriteSettings = new UrlRewriteSettings()
{
 Rules = new List<Resource>
 {
 new UrlRewriteRule()
 {
 Pattern = "^http://myOldHost/(.*)$",
 Substitution = "https://myNewHost/$1"
 }
 }
};

 $config["urlRewriteSettings"] = array(
 "rules" => array(
 array(
 "pattern" => "^http://myOldHost/(.*)$",
 "substitution" => "https://myNewHost/$1"
)
)
);

 config['urlRewriteSettings'] = {
 'rules': [{
 'pattern': "^http://myOldHost/(.*)$"
 'substitution': "https://myNewHost/$1"
 }]
}

 config['urlRewriteSettings'] = {
 rules: [{
 pattern: "^http://myOldHost/(.*)$",
 substitution: "https://myNewHost/$1"
 }]
}

 config.urlRewriteSettings = {
 rules: [{
 pattern: "^http://myOldHost/(.*)$",
 substitution: "https://myNewHost/$1"
 }]
};

 config.urlRewriteSettings = {
 rules: [{
 pattern: "^http://myOldHost/(.*)$",
 substitution: "https://myNewHost/$1"
 }]
};

 $config["urlRewriteSettings"] = {
 "rules" => [{
 "pattern" => "^http://myOldHost/(.*)$",
 "substitution" => "https://myNewHost/$1"
 }]
};

 { "urlRewriteSettings": {
 "rules": [{
 "pattern": "^http://myOldHost/(.*)$",
 "substitution": "https://myNewHost/$1"
 }]
}}

 -C config.json

 With the following config.json:

 { "urlRewriteSettings": {
 "rules": [{
 "pattern": "^http://myOldHost/(.*)$",
 "substitution": "https://myNewHost/$1"
 }]
}}

 All URLs that are called by PDFreactor are matched agains all URL rewrite rules. The URLs that are being matched are always
 absolute and normalized. This means that:

 	If the original URL was not absolute, it is resolved against the document's base URL

	All non-URI characters are URL encoded

	Dot segments are resolved or removed

 Otherwise the URL is matched as-is, including query parameters and userinfo.

 Data URLs are also matched, but before the match the data part is removed. This means you can still match the
 header, but not the actual data.

 Since only the result URLs of the rewrite are used to open connections, security settings
 only apply to the new URLs and not the original ones.

 Additional Resources

 In certain cases it is desirable to load additional resources, such as style sheets or scripts, without modifying the
 contents of the input document. This can be achieved by specifying the resources directly in the
 PDFreactor integration code instead of the document itself.

 All of these resources use the Resource model. They are usually specified by a URL or by content.
 If both content and uri properties are set, the uri is used as a base URL
 for the resource.

 User Style Sheets

 User style sheets represent CSS that is loaded in addition to the CSS specified in the input document.
 Generally, user style sheets have higher priority as document style sheets, but lower priority as inline styles.

 They can be added like this:

 config.setUserStyleSheets(
 new Resource().setContent("p { color: red; }"),
 new Resource().setUri("http://myServer/my.css"));

 config.UserStyleSheets = new List<Resource>
{
 new Resource() { Content = "p { color: red; }" },
 new Resource() { Uri = "http://myServer/my.css" }
};

 config.userStyleSheets = [
 { content: "p { color: red; }" },
 { uri: "http://myServer/my.css" }
];

 config.userStyleSheets = [
 { content: "p { color: red; }" },
 { uri: "http://myServer/my.css" }
];

 $config["userStyleSheets"] = array(
 array("content" => "p { color: red; }"),
 array("uri" => "http://myServer/my.css")
);

 config['userStyleSheets'] = [
 { 'content': 'p { color: red; }' },
 { 'uri': 'http://myServer/my.css' }
]

 config['userStyleSheets'] = [
 { 'content': 'p { color: red; }' },
 { 'uri': 'http://myServer/my.css' }
]

 $config["userStyleSheets"] = [
 { "content" => "p { color: red; }" },
 { "uri" => "http://myServer/my.css" }
);

 { "userStyleSheets": [
 { "content": "p { color: red; }" },
 { "uri": "http://myServer/my.css" }
]}

 Shorthand:

 -c "p { color: red; }" http://myServer/my.css

 Longhand:

 -C config.json

 With the following config.json:

 { "userStyleSheets": [
 { "content": "p { color: red; }" },
 { "uri": "http://myServer/my.css" }
]}

 Integration Style Sheets

 Integration style sheets are similar to user style sheets, but they have a lower priority than document CSS, and
 thus also a lower priority than user style sheets.

 config.setIntegrationStyleSheets(
 new Resource().setContent("p { font-family: sans-serif }"),
 new Resource().setUri("http://myServer/corporate-identity.css"));

 config.IntegrationStyleSheets = new List<Resource>
{
 new Resource() { Content = "p { font-family: sans-serif }" },
 new Resource() { Uri = "http://myServer/corporate-identity.css" }
};

 config.integrationStyleSheets = [
 { content: "p { font-family: sans-serif }" },
 { uri: "http://myServer/corporate-identity.css" }
];

 config.integrationStyleSheets = [
 { content: "p { font-family: sans-serif }" },
 { uri: "http://myServer/corporate-identity.css" }
];

 $config["integrationStyleSheets"] = array(
 array("content" => "p { font-family: sans-serif }"),
 array("uri" => "http://myServer/corporate-identity.css")
);

 config['integrationStyleSheets'] = [
 { 'content': 'p { font-family: sans-serif }' },
 { 'uri': 'http://myServer/corporate-identity.css' }
]

 config['integrationStyleSheets'] = [
 { 'content': 'p { font-family: sans-serif }' },
 { 'uri': 'http://myServer/corporate-identity.css' }
]

 $config["integrationStyleSheets"] = [
 { "content" => "p { font-family: sans-serif }" },
 { "uri" => "http://myServer/corporate-identity.css" }
);

 { "integrationStyleSheets": [
 { "content": "p { font-family: sans-serif }" },
 { "uri": "http://myServer/corporate-identity.css" }
]}

 -C config.json

 { "integrationStyleSheets": [
 { "content": "p { font-family: sans-serif }" },
 { "uri": "http://myServer/corporate-identity.css" }
]}

 User Scripts

 User scripts represent additional JavaScripts. They are executed after all document JavaScript has finished processing.
 You can optionally run certain user scripts before any document JavaScript by specifying the
 beforeDocumentScripts property.
 This is useful for e.g. JavaScript-based shims.

 User scripts can be added like this:

 config.setUserScripts(
 new Resource().setContent("console.log('executed first')")
 .setBeforeDocumentScripts(true),
 new Resource().setUri("http://myServer/my.js"));

 config.UserScripts = new List<Resource>
{
 new Resource()
 {
 Content = "console.log('executed first')",
 BeforeDocumentScripts = true
 },
 new Resource() { Uri = "http://myServer/my.js" }
};

 config.userScripts = [
 {
 content: "console.log('executed first')",
 beforeDocumentScripts: true
 },
 { uri: "http://myServer/my.js" }
];

 config.userScripts = [
 {
 content: "console.log('executed first')",
 beforeDocumentScripts: true
 },
 { uri: "http://myServer/my.js" }
];

 $config["userScripts"] = array(
 array(
 "content" => "console.log('executed first')"),
 "beforeDocumentScripts" => true
),
 array("uri" => "http://myServer/my.js")
);

 config['userScripts'] = [
 {
 'content': 'console.log("executed first")',
 'beforeDocumentScripts': True
 },
 { 'uri': 'http://myServer/my.js' }
]

 config['userScripts'] = [
 {
 'content': 'console.log("executed first")',
 'beforeDocumentScripts': true
 },
 { 'uri': 'http://myServer/my.js' }
]

 $config["userScripts"] = [
 {
 "content" => "console.log('executed first')",
 "beforeDocumentScripts" => true
 },
 { "uri" => "http://myServer/my.js" }
);

 { "userScripts": [
 {
 "content": "console.log('executed first')",
 "beforeDocumentScripts": true
 },
 { "uri": "http://myServer/my.js" }
]}

 Shorthand:

 -j "console.log('executed first')" http://myServer/my.js

 Longhand:

 -C config.json

 With the following config.json:

 { "userScripts": [
 {
 "content": "console.log('executed first')",
 "beforeDocumentScripts": true
 },
 { "uri": "http://myServer/my.js" }
]}

 XSLT Style Sheets

 When converting XML documents, you can add XSLT style sheets in your integration code to transform the XML into HTML.
 They can be added like this:

 config.setXsltStyleSheets(
 new Resource().setUri("http://myServer/my.xsl"));

 config.XsltStyleSheets = new List<Resource>
{
 new Resource() { Uri = "http://myServer/my.xsl" }
};

 config.xsltStyleSheets = [
 { uri: "http://myServer/my.xsl" }
];

 config.xsltStyleSheets = [
 { uri: "http://myServer/my.xsl" }
];

 $config["xsltStyleSheets"] = array(
 array("uri" => "http://myServer/my.xsl")
);

 config['xsltStyleSheets'] = [
 { 'uri': 'http://myServer/my.xsl' }
]

 config['xsltStyleSheets'] = [
 { 'uri': 'http://myServer/my.xsl' }
]

 $config["xsltStyleSheets"] = [
 { "uri" => "http://myServer/my.xsl" }
);

 { "xsltStyleSheets": [
 { "uri": "http://myServer/my.xsl" }
]}

 -C config.json

 With the following config.json:

 { "xsltStyleSheets": [
 { "uri": "http://myServer/my.xsl" }
]}

 Colors

 Color Keywords

 Instead of using color functions or the hexadecimal notation a single human readable keyword can be used. For more information which keywords are supported by
 PDFreactor see the CSS Color Keywords table. The keywords
 are internally converted into the user-set color space. By default, they are converted into RGB colors.

 RGB Colors

 In CSS you can specify RGB Red Green Blue,
 additive color model, consisting of the color components red, blue and green.
 colors in the following ways:

 	

 # followed by a 6 digit RGB value in hexadecimal notation, e.g. #00ff00 for perfect green. Adding two more digits
 defines the alpha channel, with ff being opaque.

 You can abbreviate this notation by using only 3 digits which will be expanded internally, e.g. #0f5 equals #00ff55.
 The same can be done with 4 digits to also define the alpha channel.

	

 Using the function rgb. It takes the 3 RGB component values as parameters in
 decimal or percent notation, e.g. rgb(0,255,0) or rgb(0%,100%,0%) for perfect green.

 RGBA Colors

 RGBA Red Green Blue Alpha, a color model similar to RGB, with extra information about the translucency.
 colors are also supported and can be specified by using the function rgba. It
 takes the 3 RGB component values as well as 1 alpha component value as parameters in decimal or percent notation, e.g. rgba(0,0,255,0.5)
 or rgba(0%,100%,0%,50%) for semi-translucent blue.

 While it is currently possible to set RGBA colors on any CSS border, complex border settings (e.g. table cells borders) or border styles other than "solid" are
 not yet supported and may cause unexpected visual outcome.

 The functions rgb and rgba share the same syntax and can be used interchangeably, so rgb(0%,100%,0%,50%) will also result in a semi-translucent blue.

 CMYK Colors

 Besides rgb and rgba PDFreactor also supports the non-standard
 function cmyk. It takes the 4 CMYK component values as parameters in decimal or
 percent notation, e.g. cmyk(0,0,1,0) or cmyk(0%,0%,100%,0%) for perfect yellow. An optional fifth
 parameter can be used to define the color's alpha value, e.g. cmyk(0%,0%,100%,0%,10%) would be a transparent yellow with an alpha
 of only 10%.

 Color keywords can be converted automatically into CMYK using the configuration property colorSpaceSettings.targetColorSpace:

 config.setColorSpaceSettings(new ColorSpaceSettings()
 .setTargetColorSpace(ColorSpace.CMYK);

 config.ColorSpaceSettings = new ColorSpaceSettings
{
 TargetColorSpace = ColorSpace.CMYK
};

 config.colorSpaceSettings = {
 targetColorSpace: PDFreactor.ColorSpace.CMYK
}

 config.colorSpaceSettings = {
 targetColorSpace: PDFreactor.ColorSpace.CMYK
}

 $config["colorSpaceSettings"] = array(
 "targetColorSpace" => ColorSpace::CMYK
);

 config['colorSpaceSettings'] = {
 'targetColorSpace': PDFreactor.ColorSpace.CMYK
}

 config['colorSpaceSettings'] = {
 targetColorSpace: PDFreactor::ColorSpace::CMYK
}

 $config["colorSpaceSettings"] = {
 'targetColorSpace' => PDFreactor::ColorSpace->CMYK
};

 { "colorSpaceSettings": {
 "targetColorSpace": "CMYK"
}}

 -C config.json

 With the following config.json:

 { "colorSpaceSettings": {
 "targetColorSpace": "CMYK"
}}

 CMYK colors are also supported in SVGs.

 HSL Colors

 HSL Hue Saturation Lightness,
 alternative representation of colors of the RGB color model.
 is another representation of the RGB color space. The hue value is in the range of 0 to 360, the saturation and lightness values range between 0 and 1. It is
 possible to set HSL colors using the function hsl. It takes the 3 HSL component
 values as parameters in decimal or percent notation, e.g. hsl(240,0,0) or hsl(66%,0%,0%) for blue. As
 with rgb, there is also the function hsla, though both functions allow an
 additional parameter for the alpha value.

 Spot Colors

 Spot or separation colors, e.g. Pantone colors, are special named colors for professional printing. The specific color name is passed as is to the print
 workflow. As they cannot be displayed on screen (or printed without the correct named color), a fallback color must be specified, e.g. a similar CMYK color. A
 spot color can be used via the CSS functions -ro-spot and
 -ro-separation. The functions takes two or three parameters: The spot color name, the color tint (which is optional and defaults to 1.0, which represents maximum "opacity") and the fallback color.

 Color Conversion

 Different colors can be converted into a common color space. See for more information.

 Compound Formats

 In addition to rendering HTML and XML styled with CSS, PDFreactor is also able to render documents with compound formats such as
 images, SVGs or barcodes, so-called replaced elements.

 The replaced elements can be mapped to arbitrary elements using styles.

 You can use namespaces to include other document formats to integrate XML elements from a different namespace directly within your document.

 Images

 PDFreactor has support for the image formats PNG, JPEG, TIFF, BMP, GIF as wells as limited support for WebP (lossy simple VP8).

 Images are embedded by PDFreactor "as-is", whenever possible, unless the properties or
 are used. This means that images are not modified in any way and will be embedded without any re-encoding and without any loss in quality. Possible
 discrepancies in perceived quality might occur depending on the PDF viewer and the zoom level.

 PDFreactor supports the img element per default in HTML. For other XML languages, you can use
 proprietary CSS extensions to define an image element. For example, in an XML vocabulary where an image element is <image
 source='test.jpg'>, the corresponding CSS definition would be:

 image {
 -ro-replacedelement: image;
 -ro-source: attr(source);
}

 To define an element as image element, you must specify the replaced element formatter for images for this element, as displayed in the example above. Using the
 property and the attr function, you can select an attribute of this element. The value of this
 attribute must always be of the type URI Uniform Resource Identifier (https://www.w3.org/Addressing/)
 and is used to load the image.

 Corrupted images, embedded "as-is", may lead to corrupted PDF output.

 Save Memory Mode

 PDFreactor needs to access image data multiple times during the conversion. It needs to know an image's dimensions during layout, and then the actual binary data to embed it in the PDF during rendering.
 To avoid having to download the image multiple times and thus slowing down the conversion, PDFreactor keeps downloaded images in memory for quick access. However, in certain scenarios, images can be quite
 large, e.g. high-resolution TIFFs for print. In this case, it can actually be detrimental to keep the image in memory. You can use the processingPreferences configuration object to
 change the default behavior of PDFreactor. The value SAVE_MEMORY_IMAGES prevents PDFreactor from keeping images in memory. Instead, they are downloaded each time PDFreactor requires data.

 config.setProcessingPreferences(
 ProcessingPreferences.SAVE_MEMORY_IMAGES);

 config.ProcessingPreferences = new List<ProcessingPreferences>
{
 ProcessingPreferences.SAVE_MEMORY_IMAGES
};

 $config["processingPreferences"] =
 array(ProcessingPreferences::SAVE_MEMORY_IMAGES);

 config['processingPreferences'] =
 [PDFreactor.ProcessingPreferences.SAVE_MEMORY_IMAGES]

 config['processingPreferences'] =
 [PDFreactor::ProcessingPreferences::SAVE_MEMORY_IMAGES]

 config.processingPreferences =
 [PDFreactor.ProcessingPreferences.SAVE_MEMORY_IMAGES];

 config.processingPreferences =
 [PDFreactor.ProcessingPreferences.SAVE_MEMORY_IMAGES];

 $config["processingPreferences"] =
 [PDFreactor::ProcessingPreferences->SAVE_MEMORY_IMAGES];

 { "processingPreferences": ["SAVE_MEMORY_IMAGES"] }

 --processingPreferences SAVE_MEMORY_IMAGES

 SVG

 PDFreactor supports the following SVG Scalable Vector Graphics (https://www.w3.org/Graphics/SVG/)
 types: SVG and SVGZ. PDFreactor automatically converts
 SVG documents referenced via the img element. Example:

 Alternatively, you can embed SVG directly into your documents:

 a circle:

<svg width="100" height="100">
 <circle cx="50" cy="50" r="45" fill="yellow" stroke="black" />
</svg>

sometext.......

 When using non-HTML5 documents, an SVG namespace has to be added and used:

 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="100" height="100">
 <svg:circle cx="50" cy="50" r="45" fill="yellow" stroke="black" />
</svg:svg>

 Rasterization

 SVGs are embedded into the PDF as vector graphics, keeping them resolution independent. However, SVGs containing masks, filters or non-default composites
 have to be rasterized Rasterization is the task of taking an image described in a vector
 graphics format and converting it into a raster (pixel) image.
 . This behavior can be configured using CSS:

 The style -ro-rasterization: avoid disables the aforementioned SVG
 features to avoid having to rasterize the image.

 The property configures the resolution of the
 rasterization. The default value is 2, meaning twice the default CSS resolution of 96dpi. Accepted
 values are all positive integers. Higher resolution factors increase the quality of the image, but also increase the conversion time and the size of the output
 documents.

 CMYK Colors in SVG

 PDFreactor supports CMYK colors in SVGs. Those are passed to the PDF as-is, as long as the SVG is not rasterized.

 stroke="cmyk(0.0, 0.0, 0.0, 1.0)"

 MathML

 To display
 MathMLMathematical Markup Language
 (https://www.w3.org/Math/)
 in documents we recommend using the JavaScript library MathJaxMathJax
 (https://www.mathjax.org/ &
 https://github.com/mathjax/MathJax/)
 licensed under the Apache License 2.0.
 To use it without modifying the input documents you can use the following user scripts (see).

 The first script consists of settings for the next one:

 "roMjPath" must be set to the URL or path to the file MathJax.js, excluding the filename itself.

 "roMjFile" specifies the name of the main MathJax file. It should should usually be left default.

 "roMjSvgBlacker" allows to optionally increase the thickness of the fonts used by MathJax.

 Please see the comments in the snippet for example values:

 roMjPath = ""; // default: "",
 // examples: "MathJax/", "../../resource/js/mathjax/",
 // "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/"

roMjFile = "MathJax.js"; // default: "MathJax.js",
 // examples: "mathjax.js", "mathjaxmod.js"

roMjSvgBlacker = 0; // default: 0,
 // examples: 1, 2

 The second script uses the values from the first one and inserts the required script elements into the document,
 so MathJax is loaded and processes all "math" elements. It does not have to be modified.

 document.documentElement.firstElementChild.insertAdjacentHTML('beforeend',
 '\u003Cscript type="text/x-mathjax-config">MathJax.Hub.Config(' +
 JSON.stringify({
 jax: ["input/MathML", "output/SVG"],
 extensions: ["mml2jax.js"],
 MathML: { extensions: ["content-mathml.js"] },
 SVG: { blacker: (typeof window.roMjSvgBlacker == "number" &&
 window.roMjSvgBlacker > 0 ? window.roMjSvgBlacker : 0) }
 }) +
 ');\u003C/script>\n' +
 '\u003Cscript type="text/javascript" src="' +
 (window.roMjPath ? window.roMjPath : "MathJax/") +
 (window.roMjPath && !(window.roMjPath + "").endsWith("/") ? "/" : "") +
 (window.roMjFile ? window.roMjFile : "MathJax.js") +
 '">\u003C/script>'
);

 PDFreactor supports MathJax up to version 2. We recommend using the most recent release of that version to display MathML. MathJax v3 is currently not suported.

 Barcodes

 PDFreactor supports displaying numerous linear and 2D barcode symbologies using the following style:

 .barcode {
 -ro-replacedelement: barcode;
}

 The resulting replaced element can be customized by applying various CSS properties.

 The most important one is -ro-barcode-type, which can be used to select a specific type (and subtype) of barcode to be rendered.
 For some types, the last argument of the property is also used to configure a unique characteristic of the barcode (refer to the appendix for more information).

 The behavior of most of the -ro-barcode-* properties depends on the selected barcode type.

 A full list of all supported barcode types, their subtypes and applicable CSS properties can be found in the appendix.

 Defining the Content

 There are multiple ways to define the content of the barcode. To define it directly, you can use the
 -ro-barcode-content property:

 .barcode {
 -ro-replacedelement: barcode;
 -ro-barcode-type: upc-e;
 -ro-barcode-content: "123456";
}

 [image: Example UPC-E barcode]

 As MaxiCodes require a primary string in mode 2 or 3, the last argument of -ro-barcode-type is
 used to add it.

 .barcode {
 -ro-replacedelement: barcode;
 -ro-barcode-type: maxicode mode-3 "999999999840012";
 -ro-barcode-content: "1234567894561230";
}

 [image: Example MaxiCode barcode]

 If -ro-barcode-content is not set, PDFreactor will
 try to use the value of the element's href attribute:

 HTML:

 CSS:

 #qrcode {
 -ro-replacedelement: barcode;
 -ro-barcode-type: qrcode;
 -ro-barcode-ecc-level: H;
 -ro-barcode-size: 2;
}

 [image: Example QR code]

 If both -ro-barcode-content and the
 href attribute are empty, PDFreactor will use the text content of the element.
 That content is always trimmed, i.e. whitespace characters at its beginning and end are removed.
 By default other sequences of whitespace characters are collapsed to single spaces.
 Collapsing can be disabled by changing the value of white-space
 from normal to pre.

 Automatically resolving relative URLs

 If a relative URL is set as the barcode's content using the url
 function, or if it is retrieved from the href attribute, PDFreactor will automatically try to
 resolve it according to the document's baseUrl.

 HTML:

 CSS:

 #gridmatrix {
 -ro-replacedelement: barcode;
 -ro-barcode-type: grid-matrix;
}

 [image: Example grid matrix]

 If links are enabled, PDFreactor will automatically check whether the
 content of the barcode is a valid URL and add the respective link.

 Customizing the barcode color

 By default, all barcodes will be rendered in black with a transparent background.
 To change the foreground color, you can use the
 -ro-barcode-color property. If it is set to
 currentColor, the value of the color property will
 be used.

 Adjusting the barcode size

 When adjusting the size of the barcode, you should differentiate between two aspects:
 On the one hand, there is its natural size (also called intrinsic size), which is the size
 the barcode itself would have without the influence of the layout around it. It depends on
 factors like the barcode type, its content and certain settings, for example its
 ecc level.

 And on the other hand, there is the specific size (also called extrinsic size), which is
 the size the barcode actually consumes in the layout and the resulting document. It depends on
 the context and CSS styles of the barcode element.

 Adjusting the specific size

 The replaced element will be adjusted automatically to comply with the surrounding document's layout.
 However, as the aspect ratio is not always preserved, this might result in distorted barcodes, i.e. having
 an incorrect aspect ratio.
 This can be prevented by setting the object-fit property
 to contain.

 Adjusting the natural size

 For some barcode types, the -ro-barcode-size
 property can be used to select a certain sized version.
 E.g. for a QR code, setting -ro-barcode-size to 10
 would result in a version 10 QR code, which contains 57 x 57 modules.

 For other types, like databar-expanded, the
 property adjusts the amount of columns which should be used to store data.
 Applied to PDF417 codes, the property can additionally be used to adjust how many rows are rendered.

 The value defined by -ro-barcode-size might be
 ignored in some cases, like when the selected size is not sufficient to store the specified amount of
 data.

 If applied to a one dimensional barcode, the property sets the bar height.

 More detailed descriptions on how
 -ro-barcode-size behaves depending on the used
 barcode type can be found in the appendix.

 Adjusting human readable text

 For all barcode types that possess human readable text, some additional changes can be applied.
 The used font can be customized using the -ro-barcode-font-size and -ro-barcode-font-family properties.
 The position and alignment of the human readable text can be changed using the -ro-barcode-human-readable-position property, which can also be used to remove it entirely.
 If the barcode type allows for affixes to be added to the human readable text, they can be configured using the -ro-barcode-human-readable-affix property.
 A detailed list on which barcode types possess affixes can be found in the appendix.

 HTML:

 CSS:

 #code-128-no-human-readable {
 -ro-replacedelement: barcode;
 -ro-barcode-type: code128;
 -ro-barcode-human-readable-position: none;
 -ro-barcode-content: "123456";
}

 [image: Example Code 128 without human readable text]

 Object and Embed

 PDFreactor supports the object and embed elements of HTML. You can
 use either element or a combination of both to embed any type of data such as for example a flash animation. The most simple code to do so is:

 <embed src="myflash.swf" width="256" height="256"
 type="application/x-shockwave-flash"/>

 Besides flash you can also embed various other formats, e.g. videos. The data is embedded in the PDF, but whether or not it is displayed
 depends on the formats supported by your PDF viewer.

 iframes

 An iframe allows another document, for example content from other pages, to be embedded inside an existing one.

 The source document

 There are two ways to define the inner document of an iframe. The first option is to use the src attribute and specifying the
 URL from which the document should be loaded. The URL might be absolute or relative and should refer to an HTML document.

 The second option is useful if the inner document is very short and simple. When using the srcdoc attribute, its value is set to be
 the inner document's source code.

 <iframe src="https://www.pdfreactor.com" width="600" height="400">
</iframe>

<iframe srcdoc="<p>Hello World</p>">
 This is fallback text in case the user-agent does not support
 iframes.
</iframe>

 If both attributes have been set, srcdoc has priority over src.

 Seamless

 If the seamless attribute has been set, the iframe's document behaves as it would be in the document that contains the iframe.
 That means that the width and height of the iframe are ignored and the inner document is shown completely if possible.

 Furthermore, the borders of the iframe are removed and most importantly all styles from the outer document are inherited by the inner document.

 When generating the PDF, the headings and other bookmark styles inside the iframe are passed through, so they can be found in the bookmark list.

 The seamless attribute is a boolean attribute, which means that if it is true it exists and false otherwise. The only valid values
 of seamless are an empty string or "seamless". The attribute can also be used without any value:

 <iframe src="https://www.pdfreactor.com" width="600" height="400"
 seamless>
</iframe>

 Generally, true and false are INVALID values for boolean attributes.

 Customization

 Using CSS styles, it is possible to customize the look and functionality of iframes.

 The border, padding and margin can be set or removed with the appropriate styles.

 iframe {
 border: none;
 padding: 0px;
 margin: 0px;
}

 By default, if seamless is false neither style sheets nor inline styles are passed down to the iframe's document. However, by using
 the property , this behavior can be customized.

 When generating a PDF with the bookmarks feature enabled, the headings in the document are added as bookmarks to quickly navigate the document.

 Using the property it is possible to enable or disable this
 feature for iframes, thus allowing the headings of the inner document to be added to the bookmarks list or not. The property can be either set to true or false. If the iframe is seamless, it is set to true by default.

 <iframe src="https://www.pdfreactor.com" width="600" height="400"
 seamless="seamless" style="-ro-passdown-styles:stylesheets-only;
 -ro-bookmarks-enabled:false;">
</iframe>

 Canvas Element

 PDFreactor has built-in support for the canvas element of HTML5. The canvas element is a dynamic
 image for rendering graphics primitives on the fly. In contrast to other replaced elements the content of the canvas element must be generated dynamically via , instead of referencing an external resource that contains the content to be displayed (as
 is the case for example for images).

 Below is a simple code fragment which renders shadowed text into a canvas element:

 <head>
 <script type="text/javascript">
 function draw() {
 var ctx = document.getElementById("canvas").getContext('2d');
 ctx.font = "50px 'sans-serif'";
 ctx.shadowBlur = 5;
 ctx.shadowColor = "#aaa";
 ctx.shadowOffsetX = 2;
 ctx.shadowOffsetY = 2;
 ctx.fillStyle = "black";
 ctx.fillText("PDFreactor",0,50);
 }
 </script>
</head>
...
<body onload="draw();">
 <canvas id="canvas" width="400" height="300">
 Canvas element is not supported.
 </canvas>
</body>

 Resolution Independence

 PDFreactor by default does not use a resolution-dependent bitmap as the core of the canvas. Instead it converts the
 graphics commands from JavaScript to resolution-independent PDF objects. This avoids resolution-related issues like blurriness or pixelation.

 Shadows cannot be convert to PDF objects. So those are added as images. This does not affect other objects in the canvas.

 Accessing ImageData of a canvas or setting a non-default composite causes that canvas to be rasterized entirely.

 This behavior can be configured using CSS:

 The style -ro-rasterization: avoid disables functionality that causes
 the rasterization of the canvas.

 The style -ro-rasterization: always forces the canvas to be rasterized in any case.

 The property configures the resolution at which the
 canvas or shadows are rasterized. The default value is 2, meaning twice the default CSS resolution of 96dpi. Accepted values are 1 to 4. Higher resolution factors increase the quality of the image, but also increase the conversion
 time and the size of the output documents. This does not affect canvas objects that are not rasterized.

 PDF Pages as Images

 PDFreactor can losslessly embed pages from other PDFs as images in the document to be converted to PDF or draw them into image output. To use a PDF as an image in a document, simply use the img element, like you would for any other image. Example:

 In the example above, the PDF image will always display the first page of the PDF. You can select which page should be displayed using the CSS property -ro-source-page. The example below shows how to display page 5 of the
 PDF:

 By default the media box, i.e. the entire sheet, of the PDF page is visible and used for sizing.
 This can be reduced to any other PDF page box like "crop" or "trim" via the property -ro-source-area.
 The example below shows how to display only the crop box of the PDF page:

 PDF images expose the page count of their source document to JavaScript via the proprietary property roPageCount of the img HTML element. If the object is not a PDF image roPageCount will return 0.
 In the following example, let's assume we have a PDF image with the id "pdfimage":

 var reportPdf = document.getElementById("pdfimage");
var pageCount = reportPdf.roPageCount;

 Filters and Shadows

 Certain effects, like blurring, are not natively supported by the PDF format. In such cases, PDFreactor has to generate an image of the corresponding
 element, with the effects already applied. The image can always be displayed in the PDF and if necessary an invisible text overlay above the image ensures, that
 the text inside the element can still be selected, copied and is accessible, e.g. to screen readers.

 The CSS properties that require element rasterization are:

 	

 box-shadow (only the shadow itself is rastered. The content of the
 element can be rendered as usual).

	

 filter

	

 text-shadow

 When creating soft shadows or using blur filters, the blurring itself is a time-consuming task and can, depending on the content to be generate, increase the creation time of the PDF significantly.
 Thus blurs and shadows should be used with caution if the conversion time of the PDF is important.

 The resolution of the resulting image can be customized via the -ro-rasterization-supersampling property. The default value is 2,
 meaning 192dpi, as a compromise between quality, performance and size.

 Please note that increasing the resolution or applying shadows and filters on large or many elements will not only increase the size of the converted PDF but
 may also slow down PDF readers.

 As a safeguard against memory and performance issues, the maximum size of a single rasterized image can be limited. By default an image will be rasterized to have less than 2 megapixels. This is still large enough to
 cover an A4 page-sized image with the default supersampling. The CSS property allows to customize or disable that limit.

 If the only filter function used is opacity, consider using the CSS property opacity instead. PDFreactor uses native PDF functionality to render the transparent element, thus avoiding the
 drawbacks of rasterization.

 JavaScript

 This chapter refers to JavaScript in the input document, processed by PDFreactor like in a browser. There are also:

 	

 The JavaScript API that allows using PDFreactor from JavaScript in a browser

	

 Scripts added to the resulting PDFs, processed by the PDF-viewer

 PDFreactor can be configured to process JavaScript that is embedded into or linked from input HTML documents. This functionality
 can be enabled as follows:

 config.setJavaScriptSettings(new JavaScriptSettings()
 .setEnabled(true));

config.JavaScriptSettings = new JavaScriptSettings
{
 Enabled = true
};

 config.javaScriptSettings = {
 enabled: true
};

 config.javaScriptSettings = {
 enabled: true
};

 $config["javaScriptSettings"] = array(
 "enabled" => true
);

 config['javaScriptSettings'] = {
 'enabled': True
}

 config['javaScriptSettings'] = {
 enabled: true
}

 $config["javaScriptSettings"] = {
 'enabled' => true
};

 { "javaScriptSettings": {
 "enabled": true
}}

 Shorthand:

 -j

 Longhand:

 -C config.json

 With the following config.json:

 { "javaScriptSettings": {
 "enabled": true
}}

 It is also possible to manually add scripts:

 config.setUserScripts(
 new Resource().setContent("console.log('test')"));

 config.UserScripts = new List<Resource>
{
 new Resource() { Content = "console.log('test')" }
};

 config.UserScripts = [
 { content: "console.log('test')" }
];

 config.UserScripts = [
 { content: "console.log('test')" }
];

 $config["UserScripts"] = array(
 array("content" => "console.log('test')")
);

 config['UserScripts'] = [
 { 'content': 'console.log("test")' }
]

 config['UserScripts'] = [
 { 'content': 'console.log("test")' }
]

 $config["UserScripts"] = [
 { "content" => "console.log('test')" }
);

 { "userScripts": [
 { "content": "console.log('test')" }
]}

 Shorthand:

 -j "console.log('test')"

 Longhand:

 -C config.json

 With the following config.json:

 { "userScripts": [
 { "content": "console.log('test')" }
]}

 The PDFreactor API documentation for details on these API methods.

 JavaScript processing during PDF conversion works like it does in a browser, with some exceptions:

 	

 The delays of setTimeout or setInterval are applied only to the virtual time
 of JavaScript processing and do not actually slow down the conversion.

	
 Alerts and other dialogs are logged and do not stop script processing.

	
 There are no security measures based on the origin of URLs ("cross-site scripting").

 JavasScript processing is subject to a few other limitations that will be eliminated in future versions of PDFreactor:

 	
 DOM access to elements inside embedded SVGs may be subject to minor limitations. Reading from and manipulating form elements is not fully supported.

	

 Coordinates (e.g. retrieved via getDOMRects) are relative to their pages, which might lead to unexpected results in some
 situations.

	
 Redirects (e.g. changing window.location) are not possible.

	
 After setting a CSS shorthand on inline-style, the longhand values cannot be retrieved from there.

 JavaScript modes

 Additional debug information can be logged at different granularities, provided that logging is enabled:

 config.setJavaScriptSettings(new JavaScriptSettings()
 .setEnabled(true)
 .setDebugMode(JavaScriptDebugMode.EXCEPTIONS));

config.JavaScriptSettings = new JavaScriptSettings
{
 Enabled = true,
 DebugMode = JavaScriptDebugMode.EXCEPTIONS
};

 config.javaScriptSettings = {
 enabled: true,
 debugMode: PDFreactor.JavaScriptDebugMode.EXCEPTIONS
};

 config.javaScriptSettings = {
 enabled: true,
 debugMode: PDFreactor.JavaScriptDebugMode.EXCEPTIONS
};

 $config["javaScriptSettings"] = array(
 "enabled" => true,
 "debugMode" => JavaScriptDebugMode::EXCEPTIONS
);

 config['javaScriptSettings'] = {
 'enabled': True,
 'debugMode': PDFreactor.JavaScriptDebugMode.EXCEPTIONS
}

 config['javaScriptSettings'] = {
 enabled: true,
 'debugMode': PDFreactor::JavaScriptDebugMode::EXCEPTIONS
}

 $config["javaScriptSettings"] = {
 'enabled' => true,
 'debugMode' => PDFreactor::JavaScriptDebugMode->EXCEPTIONS
};

 { "javaScriptSettings": {
 "enabled": true,
 "debugMode": "EXCEPTIONS"
}}

 -C config.json

 With the following config.json:

 { "javaScriptSettings": {
 "enabled": true,
 "debugMode": "EXCEPTIONS"
}}

 The values of JavaScriptDebugMode are, in order of verbosity:

 	

 NONE: disables debugging. This is the default mode.
 It is highly recommended for use in production, as all other affect performance negatively by providing the debug information.

	

 POSITIONS: enables debugging at the least verbose level.
 The filenames and line numbers that caused output (e.g. via console.log) are logged. The names of scripts about to be processed are logged as well.

	

 EXCEPTIONS: enables debugging with all output from POSITIONS and additionally
 logs all exceptions thrown during JavaScript processing.

	

 FUNCTIONS: enables debugging with all output from EXCEPTIONS and additionally
 logs all functions entered or exited, including parameters and return values or exceptions.

	

 LINES: enables debugging at the most verbose level.
 In addition to all output from FUNCTIONS every line of executed JavaScript is logged.

 JavaScript libraries and frameworks

 The following tables lists some of the JavaScript libraries and frameworks supported by PDFreactor:	Library	Notes
	jQuery	functional, extensively tested
	Highcharts	functional

	MooTools	functional

	Modernizr	functional
	Flotr2	functional
	amCharts	functional

	Underscore	functional
	Handlebars	functional
	Less.js	functional
	Leaflet	functional

	RequireJS	functional
	Prototype	functional, except for event functionality
	MathJax	functional, SVG output only, see

 Proprietary Access to Layout Information

 PDFreactor allows JavaScript access to some layout information via the proprietary object ro.layout.

 Descriptions

 Many proprietary JavaScript functions return so called Description objects: PageDescription, BoxDescription, etc. These objects provide layout information on the specific type of document item, such as a document page.

 The description objects contain information about the layout of its content. The properties of a , and can be found in Appendix: JavaScript Objects And Types

 Description objects are snapshots of the particular moment they were created. Changing the document after getting one has no effect on them.

 PageDescriptions

 Describes the dimensions of a page and its rectangles as well as some further information. The rectangles are described by using . A is retrieved via the index of the desired page. The first page has the index 0.

 var pageDesc = ro.layout.getPageDescription(1);

 BoxDescriptions

 Describes the position and dimensions of the rectangles of a box as well as some further information. The rectangles are described by using a . A is retrieved via a DOM element, which may have a box, multiple ones or none.

 var element = document.querySelector("#myElem");
var boxDescriptions = ro.layout.getBoxDescriptions(element);

if (boxDescriptions.length > 0) {
 var boxDescription = boxDescriptions[0];
}

 LineDescriptions

 Contains information about a line of text. It can be retrieved from a .

 var lineDescriptions = boxDescription.lineDescriptions;

 DOMRects

 A contains the position and dimensions of a
 rectangle.

 To retrieve the DOMRect from Page- and BoxDescription use the getter functions that take an optional string parameter. This
 parameter specifies the length unit of the values of the DOMRect and has to be one of the following absolute CSS units: "px",
 "pt", "pc", "cm", "mm", "in" or "q". By default this value is "px".

 var marginRect = boxDescription.getMarginRect("cm");

 PDF Output Options

 It is possible to specify portions of the PDFreactor configuration in document JavaScript at runtime during the conversion.
 This can be useful if you want to create PDF attachments dynamically, specify PDF-specific settings like encryption on the fly, change the page order according
 to content-specific criteria, etc.

 You can access these PDF output options via the proprietary object ro.pdf. For a full list of
 supported properties refer to . The default value of these properties is taken
 from their respective configuration setting from your PDFreactor configuration. For example, if you have specified the author
 to be "John Smith" in your configuration, the value of the ro.pdf.author property will also be "John Smith" initially and can be
 changed as desired.

 In some cases it might be desirable to specify PDF attachments not in the PDFreactor API, but dynamically via JavaScript, depending on the document. This
 example shows how to add a PDF attachment from JavaScript.

 ro.pdf.attachments.push({
 name: "log.txt",
 data: "My log text.",
 description: "A JavaScript log"
});

 This example uses a custom page order to eliminate the third page from the document.

 ro.pdf.pageOrder = "1..2,4..-1";

 Even if the integration code specifies an author and a title in the configuration, these values can be overridden at runtime.

 Original configuration:

 config.setAuthor("Brian Greene");
config.setTitle("The Elegant Universe");

 config.Author = "Brian Greene";
config.Title = "The Elegant Universe";

 $config["author"] = "Brian Greene";
$config["title"] = "The Elegant Universe";

 config['author'] = "Brian Greene"
config['title'] = "The Elegant Universe"

 config['author'] = "Brian Greene"
config['title'] = "The Elegant Universe"

 config.author = "Brian Greene";
config.title = "The Elegant Universe";

 config.author = "Brian Greene";
config.title = "The Elegant Universe";

 $config["author"] = "Brian Greene";
$config["title"] = "The Elegant Universe";

 { "author": "Brian Greene", "title": "The Elegant Universe" }

 --author "Brian Greene" --title: "The Elegant Universe"

 Override at runtime:

 ro.pdf.author = "Stephen Hawking";
ro.pdf.title = "The Universe in a Nutshell";

 Exporting Data From JavaScript

 Sometimes it can be desirable to make data from JavaScript available to the PDFreactor integration for processing after the
 conversion has finished. You can export data from document JavaScript via the ro.exports JavaScript property. The exported data can
 then be accessed on the Result object via the javaScriptExports property.

 You can export any data type with ro.exports. However, since the property javaScriptExports
 returns a string, the data will be converted internally. If the data type is not a string, PDFreactor will try to convert it to
 JSON. If the data can't be converted, a generic string representation of it is used or null if none is available. This means that
 you can conveniently export JavaScript objects or arrays, and then parse the data back from JSON.

 While it is possible to export strings directly, it is generally recommended to only export JavaScript arrays or objects which will be converted
 into JSON. If an empty string is exported, it is converted to null
 when accessed through the Result object in the
 PDFreactor integration.

 Export an object:

 ro.exports = {
 message: "my exported data",
 content: [1, 2, 3]
};

 The javaScriptExports property of the Result object will return the following string:

 {"message":"my exported data","content":[1,2,3]}

 This string can then be parsed or processed further.

 Timeout

 By default, PDFreactor will run JavaScript until it is completed. However, erroneous or malicious
 scripts might contain endless loops or other structures that will prevent the script from
 ever finishing. To cancel JavaScript processing after a certain amount of time, you can configure
 a timeout.

 The following example limits JavaScript processing time to 20 seconds.

 config.setJavaScriptSettings(new JavaScriptSettings()
 .setEnabled(true)
 .setTimeout(20));

config.JavaScriptSettings = new JavaScriptSettings
{
 Enabled = true,
 Timeout = 20
};

 config.javaScriptSettings = {
 enabled: true,
 timeout: 20
};

 config.javaScriptSettings = {
 enabled: true,
 timeout: 20
};

 $config["javaScriptSettings"] = array(
 "enabled" => true,
 "timeout" => 20
);

 config['javaScriptSettings'] = {
 'enabled': True,
 'timeout': 20
}

 config['javaScriptSettings'] = {
 'enabled': true,
 'timeout': 20
}

 $config["javaScriptSettings"] = {
 'enabled' => true,
 'timeout' => 20
};

 { "javaScriptSettings": {
 "enabled": true,
 "timeout": 20
}}

 -C config.json

 With the following config.json:

 { "javaScriptSettings": {
 "enabled": true,
 "timeout": 20
}}

 awesomizr.js

 The JavaScript library awesomizr.js is a collection of helpful functions for the use with PDFreactor.
 You have to import the JavaScript and in some cases the corresponding CSS. Both the script and the css files are located
 in the PDFreactor/samples directory.

 You can add the library by using the PDFreactor configuration property userScripts. To add the respective
 CSS, use the property userStyleSheets:

 config
 .setUserStyleSheets(new Resource()
 .setUri("awesomizr.css"))
 .setUserScripts(
 new Resource().setUri("awesomizr.js"),
 new Resource().setContent("Awesomizr.createTableOfContents();"));

 config.UserStyleSheets = new List<Resource>
{
 new Resource
 {
 Uri = "awesomizr.css"
 }
};
config.UserScripts = new List<Resource>
{
 new Resource
 {
 Uri = "awesomizr.js"
 },
 new Resource
 {
 Content = "Awesomizr.createTableOfContents();"
 }
};

 config.userStyleSheets = [{
 uri: "awesomizr.css"
}];
config.userScripts = [{
 uri: "awesomizr.js"
}, {
 content: "Awesomizr.createTableOfContents();"
}];

 config.userStyleSheets = [{
 uri: "awesomizr.css"
}];
config.userScripts = [{
 uri: "awesomizr.js"
}, {
 content: "Awesomizr.createTableOfContents();"
}];

 $config["userStyleSheets"] = array(
 array(
 "uri" => "awesomizr.css"
)
);
$config["userScripts"] = array(
 array(
 "uri" => "awesomizr.js"
),
 array(
 "content" => "Awesomizr.createTableOfContents();"
)
);

 config['userStyleSheets'] = [{
 'uri': 'awesomizr.css'
}]
config['userScripts] = [{
 'uri': 'awesomizr.css'
}, {
 'content': 'Awesomizr.createTableOfContents();'
}]

 config['userStyleSheets'] = [{
 'uri': 'awesomizr.css'
}]
config['userScripts] = [{
 'uri': 'awesomizr.css'
}, {
 'content': 'Awesomizr.createTableOfContents();'
}]

 $config["userStyleSheets"] = {[
 "uri" => "awesomizr.css"
]};
$config["userScripts"] = [{
 "uri" => "awesomizr.js"
}, {
 "content" => "Awesomizr.createTableOfContents();"
}];

 {
 "userStyleSheets": [{
 "uri": "awesomizr.css"
 }],
 "userScripts": [{
 "uri": "awesomizr.js"
 }, {
 "content": "Awesomizr.createTableOfContents();"
 }]
}

 -C config.json

 With the following config.json:

 {
 "userStyleSheets": [{
 "uri": "awesomizr.css"
 }],
 "userScripts": [{
 "uri": "awesomizr.js"
 }, {
 "content": "Awesomizr.createTableOfContents();"
 }]
}

 Of course, the library and the stylesheet can alternatively be imported by the document itself. However, please note that some functions only work with PDFreactor.

 The capabilities of awesomizr.js include:

 	

 Rotating table headers to reduce the table header width

	

 Adaptive Page Break Insertion

	

 Creating a Table of Contents

 Output Formats

 PDF Output

 PDF is the default output format of PDFreactor.

 Generally PDFreactor generates PDFs with the Adobe PDF version 1.4. However, some PDF features may require viewers that support
 newer versions of PDF.

 PDF/A and PDF/X conformance may force
 different PDF versions.

 The PDF documents created with PDFreactor may contain additional metadata, which may require a PDF reader that is able to
 display a later version of Adobe PDF correctly.

 Some features of PDFreactor are specific to the PDF output format:

 Bookmarks

 [image: Bookmarks]
 Bookmarks in the Adobe Reader

 PDFreactor adds bookmarks to your document automatically. This can be disabled by using the disableBookmarks configuration property like this:

 config.setDisableBookmarks(true);

 config.DisableBookmarks = true;

 $config["disableBookmarks"] = true;

 config['disableBookmarks'] = True

 config['disableBookmarks'] = true

 config.disableBookmarks = true;

 config.disableBookmarks = true;

 $config["disableBookmarks"] = true;

 { "disableBookmarks": true }

 --disableBookmarks

 When the default HTML mode is enabled, some bookmark levels are applied by default, e.g. the following ones for heading elements:

 h1 { bookmark-level: 1;}
h2 { bookmark-level: 2;}
h3 { bookmark-level: 3;}
h4 { bookmark-level: 4;}
h5 { bookmark-level: 5;}
h6 { bookmark-level: 6;}

 Using the bookmark-level style you can create bookmarks which link to arbitrary XML
 elements in your PDF files.

 element { bookmark-level: 1; }

 Using this property, one can structure the specified elements within the bookmark view of the PDF viewer. The elements are ordered in ascending order. The element
 with the lowest bookmark level is on top of the bookmark hierarchy (similar to HTML headlines). Several bookmark levels can be set using the bookmark-level
 style.

 The property bookmark-state defines whether the entry is initially open, showing its
 descendants in the bookmark view of the PDF viewer. With the property bookmark-label
 it is possible to define the bookmark title. By default, the element's text content is used.

 How the coordinate to scroll to is determined can be changed via the property ,
 e.g. the scroll target can be offset by 1cm or the page the element is on can be used instead of the element itself.

 Links

 PDFreactor adds links to your documents by default. This can be disabled by using the disableLinks configuration property like this:

 config.setDisableLinks(true);

 config.DisableLinks = true;

 $config["disableLinks"] = true;

 config['disableLinks'] = True

 config['disableLinks'] = true

 config.disableLinks = true;

 config.disableLinks = true;

 $config["disableLinks"] = true;

 { "disableLinks": true }

 --disableLinks

 For HTML documents the following link styles are applied by default, enabling external and internal links:

 a[href] { -ro-link: attr(href); }
a[name] { -ro-anchor: attr(name); }
[id] { -ro-anchor: attr(id); }

 Using the styles and arbitrary elements can be defined to be links or anchors.

 linkElement[linkAttribute] { -ro-link: attr(linkAttribute); }
anchorElement[anchorAttribute] { -ro-anchor: attr(anchorAttribute); }

 Some PDF viewers recognize URLs written in plain text and convert them to links. This happens independently of PDFreactor and its settings and properties.

 Please see for a way to embed target files into the output PDF instead of linking to them.

 The clickable areas of links

 The proprietary property can be used to specify how the 'clickable' areas of links are determined.

 This style is not inherited. It has to be set on the same elements as -ro-link, when those should deviate from the default value: all.

 The scroll coordinate for internal links

 How the coordinate to scroll to is determined for internal links can be changed via the property
 on the target element, e.g. the scroll target can be offset by 1cm or the page the element is on can be used instead of the element itself.

 Links in Images

 When links are enabled the following also create clickable links:

 	Links in SVGs. The target is taken from the a element itself. The clickable area is the bounding rectangle of all elements contained in that element.

	HTML image map links. The clickable area and target are based on the attributes of the area.

	Barcodes containing an absolute URL. Those are clickable in their entirety pointing to that URL.

 Metadata

 The title of a generated PDF document, as well as the additional metadata author, subject and keywords, can be specified in multiple ways:

 By default the <title> tag as well as various <meta> tags are read.

 The metadata can also be read from other elements using the properties , , and .

 When a metadata property applies to multiple elements the values are concatenated. Therefore it is recommended to disable the default set elements when
 specifying other ones:

 /* Disable setting title from title or meta tags */
head * {
 -ro-title: none;
}
/* Set title from first heading */
body > h1:first-of-type {
 -ro-title: content();
}

 The metadata of the document can be overridden from the API. The following metadata can be directly set by PDFreactor:

 	
 author – The author of the document

	
 title – The document's title

	
 subject – The subject of the document

	
 creator – The content creator

	
 keywords – Usually a comma-separated list of keywords for search engines

 config
 setAuthor("John Doe")
 setTitle("Architecture of the World Wide Web, Volume One")
 setSubject("Architecture of the world wide web")
 setCreator("John's DoeNuts, Inc.")
 setKeywords("w3c, www");

 config.Author = "John Doe";
config.Title = "Architecture of the World Wide Web, Volume One";
config.Subject = "Architecture of the world wide web";
config.Creator = "John's DoeNuts, Inc.";
config.Keywords = "w3c, www";

 $config["author"] = "John Doe";
$config["title"] = "Architecture of the World Wide Web, Volume One";
$config["subject"] = "Architecture of the world wide web";
$config["creator"] = "John's DoeNuts, Inc.";
$config["keywords"] = "w3c, www";

 config['author'] = 'John Doe'
config['title'] = 'Architecture of the World Wide Web, Volume One'
config['subject'] = 'Architecture of the world wide web'
config['creator'] = 'John's DoeNuts, Inc.'
config['keywords'] = 'w3c, www'

 config['author'] = 'John Doe'
config['title'] = 'Architecture of the World Wide Web, Volume One'
config['subject'] = 'Architecture of the world wide web'
config['creator'] = 'John's DoeNuts, Inc.'
config['keywords'] = 'w3c, www'

 config.author = "John Doe";
config.title = "Architecture of the World Wide Web, Volume One";
config.subject = "Architecture of the world wide web";
config.creator = "John's DoeNuts, Inc.";
config.keywords = "w3c, www";

 config.author = "John Doe";
config.title = "Architecture of the World Wide Web, Volume One";
config.subject = "Architecture of the world wide web";
config.creator = "John's DoeNuts, Inc.";
config.keywords = "w3c, www";

 $config["author"] = "John Doe";
$config["title"] = "Architecture of the World Wide Web, Volume One";
$config["subject"] = "Architecture of the world wide web";
$config["creator"] = "John's DoeNuts, Inc.";
$config["keywords"] = "w3c, www";

 { "author": "John Doe",
 "title": "Architecture of the World Wide Web, Volume One",
 "subject": "Architecture of the world wide web",
 "creator": "John's DoeNuts, Inc.",
 "keywords": "w3c, www" }

 --author "John Doe" \
--title "Architecture of the World Wide Web, Volume One" \
--subject "Architecture of the world wide web" \
--creator "John's DoeNuts, Inc." \
--keywords "w3c, www"

 The code above creates metadata as shown in the screenshot below:

 [image: Document properties]
 Document properties dialog of Adobe Reader

 The PDF "producer" property, also known as "encoding software", cannot be overridden. It will always contain PDFreactor's
 name and version as well as basic information about the used license. For security purposes, the version number
 as well as the license information can be suppressed. See for more details.

 Custom Properties

 You can also add custom properties to the documents, for which you can define the name and value, e.g.

 config.setCustomDocumentProperties(
 new KeyValuePair("feedback address", "peter@miller.com"));

 config.CustomDocumentProperties = new List<KeyValuePair>
{
 new KeyValuePair("feedback address", "peter@miller.com")
};

 $config["customDocumentProperties"] = array(
 array(
 "key" => "feedback address",
 "value" => "peter@miller.com"
)
);

 config['customDocumentProperties'] = [
 { 'key': "feedback address", 'value': "peter@miller.com" }
]

 config['customDocumentProperties'] = [
 { key: "feedback address", value: "peter@miller.com" }
]

 config.customDocumentProperties = [
 { key: "feedback address", value: "peter@miller.com" }
];

 config.customDocumentProperties = [
 { key: "feedback address", value: "peter@miller.com" }
];

 $config["customDocumentProperties"] = [
 { "key" => "feedback address", "value" => "peter@miller.com" }
];

 { "customDocumentProperties": [
 { "key": "feedback address", "value": "peter@miller.com" }
]}

 -C config.json

 With the following config.json:

 { "customDocumentProperties": [
 { "key": "feedback address", "value": "peter@miller.com" }
]}

 Interactive PDF Forms

 HTML forms are rendered automatically by PDFreactor. In addition, you can also convert HTML forms to fully functional
 interactive PDF forms (sometimes referred to as AcroForms) using the proprietary CSS property . This property must be specified for the forms you wish to convert to an interactive PDF form.

 Example form:

 <form id="credentials">
 First Name: <input type="text" value="firstname" />
 Last Name: <input type="text" value="lastname" />
 <input type="submit" />
</form>

 To convert the form with the ID "credentials" to an AcroForm, you can use this style declaration:

 #credentials, #credentials > input { -ro-pdf-format: pdf; }

 Using this style declaration, only the form with the ID "credentials" and the input fields contained in this form are converted to an AcroForm when the PDF is
 rendered. Only the forms and form elements having this CSS style are converted. You can convert all forms and input fields using this CSS code:
 form, form input { -ro-pdf-format: pdf; }

 Tagged PDF

 Tagged PDF files contain information about the structure of the document. The information about the structure is transported via so-called "PDF tags".
 Tagging a PDF makes it accessible assistive technology like screen readers. Furthermore, depending on the application, it may improve the results of copy and paste
 or allow more advanced processing of the PDF.

 Using the addTags configuration property, you can add PDF tags to the PDF documents generated with PDFreactor.
 If you are generating a PDF from HTML input, the HTML elements and the resulting layout are automatically mapped to the appropriate PDF tag structures, so all
 you have to do is set the following configuration property to enable this feature:

 config.setAddTags(true);

 config.AddTags = true;

 $config["addTags"] = true;

 config['addTags'] = True

 config['addTags'] = true

 config.addTags = true;

 config.addTags = true;

 $config["addTags"] = true;

 { "addTags": true }

 --addTags

 PDF tagging is automatically enabled when it is required by a PDF conformance, like PDF/A-1a,
 PDF/A-3a or PDF/UA.

 For accessible documents it is required to specify the document language, see .

 For documents containing text in RTL direction that have to be accessible the property
 must not be set to "speed", as that does only ensure that the text is in the correct order visually, but not logically.

 Creating tagged PDFs from non-HTML input documents

 When generating PDFs from XML dialects, like DocBook, the elements of this XML language cannot be mapped to PDF tag types automatically. Most of the tag
 structure is still generated from the information available from the layout of paragraphs, lists, tables and so on. It is, however, necessary to manually
 mark elements with semantic or structural properties, especially headings.

 To do so you can map XML elements to PDF tag types using proprietary CSS. The relevant properties are and , as well as to some
 extend and .

 "-ro-pdf-tag-type" is used to map an element of the XML language you are using to a PDF tag, for example:

 sect1 > title {
 -ro-pdf-tag-type: "H2";
}

 If you were using DocBook, this would map the "title" elements inside "sect1" elements to the PDF tag "H2" (heading, level 2).

 The property "-ro-alt-text" is used to specify an alternative description for an XML element. Example:

 img {
 -ro-pdf-tag-type: "Figure";
}
img[alt] {
 -ro-alt-text: attr(alt);
}

 The example above maps the HTML element to the PDF tag "Figure", and the content of its alt
 attribute to an alternative description for this tag.

 You can use the property to define which elements or attributes in
 the input document are used as the source for the names of form elements in the generated PDF. By default, the names are adopted from the value
 attribute of the form element.

 Using the , the name for radio button groups can be adopted
 in the same way. By default, it will be adopted from the name attribute of the radio button element.

 PDF/A Conformance

 PDFreactor supports the creation of PDF/A-1a or PDF/A-3a conformant files, as well as other PDF/A
 sub-formats, which, however, will not be covered in detail.

 PDF/A is a family of ISO standards ("ISO 19005") for long-term archiving of documents. The goal of
 these standards is to ensure the reproduction of the visual appearance as well as the inclusion of the document's structure. All information necessary for
 displaying the document in the same way every time is embedded in the file. Dependencies on external resources are not permitted. PDF/A-1a and PDF/A-3a also require the output
 PDF documents to be tagged, providing accessible documents. PDFreactor will automatically ensure the requirements are met as far as possible.

 Many companies and government organizations worldwide require PDF/A compliant documents.

 PDF/A-1a is the strictest PDF/A standard
 while the newer PDF/A-3a is more lenient, e.g. allowing transparency and attachments.

 PDF/A imposes the following restrictions, which PDFreactor
 automatically enforces (overriding configuration settings), so no manual intervention is required unless noted otherwise:

 	
 All used fonts are embedded.

	
 All images are embedded.

	
 Multi-media content is forbidden.

	
 PDF Script is prohibited. (Does not affect JavaScript in the source HTML document)

	
 Encryption is prohibited.

	
 The PDF must be tagged.

	
 Metadata included in the PDF is required to be standard-based XMP.

	
 Colors are specified in a device-independent manner. (see below)

	
 Attachments are prohibited. (PDF/A-1 only)

	
 Transparency is prohibited (PDF/A-1 only), see image alpha channels in PDF/A-1.

 PDF/A documents must use either RGB or CMYK colors exclusively (color keywords and gray colors will be
 converted appropriately). By default RGB colors are expected. Using CMYK requires an output intent including an ICC profile. (It is also possible to specify an
 RGB profile to replace the default sRGB.) Please see .

 To create a PDF/A conformant document, the configuration property conformance is
 used in the PDFreactor integration, e.g.:

 config.setConformance(Conformance.PDFA3A);

 config.Conformance = Conformance.PDFA3A;

 $config["conformance"] = Conformance::PDFA3A;

 config['conformance'] = PDFreactor.Conformance.PDFA3A

 config['conformance'] = PDFreactor::Conformance::PDFA3A

 config.conformance = PDFreactor.Conformance.PDFA3A;

 config.conformance = PDFreactor.Conformance.PDFA3A;

 $config["conformance"] = PDFreactor::Conformance->PDFA3A;

 { "conformance": "PDFA3A" }

 --conformance "PDFA3A"

 The supported PDF/A conformance levels are PDF/A-1a,
 PDF/A-1b, PDF/A-2a, PDF/A-2b, PDF/A-2u, PDF/A-3a, PDF/A-3b and PDF/A-3u.

 PDF/A-1 alpha channels

 Images in PDF/A-1 document may have an alpha channel. However, the values in the channel may only be the minimum and maximum, i.e. fully transparent and fully opaque.
 For images that violate that requirement PDFreactor applies dithering to the alpha channel to create a valid one that approximates the original.

 PDFreactor can ignore the alpha channels of images, thus making them compatible with PDF/A-1 output. This can be done with the ignoreAlpha
 configuration property like this:

 config.setIgnoreAlpha(true);

 config.IgnoreAlpha = true;

 $config["ignoreAlpha"] = true;

 config['ignoreAlpha'] = True

 config['ignoreAlpha'] = true

 config.ignoreAlpha = true;

 config.ignoreAlpha = true;

 $config["ignoreAlpha"] = true;

 { "ignoreAlpha": true }

 --ignoreAlpha

 Please note that ignoring the alpha channel of images may lead to unexpected results.

 Validation

 PDFreactor can optionally validate the generated PDF against specified PDF/A or PDF/UA conformances using the configuration
 property validateConformance. Validation is optional and might take several minutes depending on the size
 and complexity of the document. It can be enabled like this:

 config.setValidateConformance(true);

 config.ValidateConformance = true;

 $config["validateConformance"] = true;

 config['validateConformance'] = True

 config['validateConformance'] = true

 config.validateConformance = true;

 config.validateConformance = true;

 $config["validateConformance"] = true;

 { "validateConformance": true }

 --validateConformance

 When conformance validation is enabled, PDFreactor will throw an exception and terminate the conversion should the document
 not validate against all specified conformances. If the PDF validates successfully, the conversion will finish normally.
 In either case, the log will contain additional information about the document’s validation status.

 It is also possible to create documents that are PDF/UA
 compliant in addition to being PDF/A compliant, combining the benefits of both formats for maximum
 accessibility and archivability. We highly recommend adding PDF/UA conformance when creating PDF/A documents:

 config.setConformance(Conformance.PDFA3A_PDFUA);

 config.Conformance = Conformance.PDFA3A_PDFUA;

 $config["conformance"] = Conformance::PDFA3A_PDFUA;

 config['conformance'] = PDFreactor.Conformance.PDFA3A_PDFUA

 config['conformance'] = PDFreactor::Conformance::PDFA3A_PDFUA

 config.conformance = PDFreactor.Conformance.PDFA3A_PDFUA;

 config.conformance = PDFreactor.Conformance.PDFA3A_PDFUA;

 $config["conformance"] = PDFreactor::Conformance->PDFA3A_PDFUA;

 { "conformance": "PDFA3A_PDFUA" }

 --conformance "PDFA3A_PDFUA"

 PDF/UA Conformance

 PDF/UA is a standard for accessible PDF documents, which has been adopted as a recommendation or
 requirement by many organizations worldwide.

 It primarily defines correct PDF tagging. The only other restriction that may require manual intervention is that the document must have a title. (If the title
 is not specified in the input document, it can be set via the configuration property title.)

 PDFreactor can create PDF/UA compliant documents. Tagging is done by a sophisticated algorithm. For
 most documents it does not require any manual tweaking to produce results that pass accessibility checks with no errors and little to no warnings.

 To create a PDF/UA conformant document, the configuration property conformance can be
 used in the PDFreactor integration, e.g.:

 config.setConformance(Conformance.PDFUA);

 config.Conformance = Conformance.PDFUA;

 $config["conformance"] = Conformance::PDFUA;

 config['conformance'] = PDFreactor.Conformance.PDFUA

 config['conformance'] = PDFreactor::Conformance::PDFUA

 config.conformance = PDFreactor.Conformance.PDFUA;

 config.conformance = PDFreactor.Conformance.PDFUA;

 $config["conformance"] = PDFreactor::Conformance->PDFUA;

 { "conformance": "PDFUA" }

 --conformance "PDFUA"

 It is also possible to create documents that are PDF/A compliant in addition to being
 PDF/UA compliant, combining the benefits of both formats for maximum accessibility and
 archivability. We recommend adding PDF/A-3a conformance when creating PDF/UA documents, as long as the additional restrictions are met by the input document.

 config.setConformance(Conformance.PDFA3A_PDFUA);

 config.Conformance = Conformance.PDFA3A_PDFUA;

 $config["conformance"] = Conformance::PDFA3A_PDFUA;

 config['conformance'] = PDFreactor.Conformance.PDFA3A_PDFUA

 config['conformance'] = PDFreactor::Conformance::PDFA3A_PDFUA

 config.conformance = PDFreactor.Conformance.PDFA3A_PDFUA;

 config.conformance = PDFreactor.Conformance.PDFA3A_PDFUA;

 $config["conformance"] = PDFreactor::Conformance->PDFA3A_PDFUA;

 { "conformance": "PDFA3A_PDFUA" }

 --conformance "PDFA3A_PDFUA"

 PDF/X Conformance

 PDFreactor supports the creation of PDF/X conformant files, specifically PDF/X-1a:2001, PDF/X-3:2002, PDF/X-1a:2003, PDF/X-3:2003, PDF/X-4 and PDF/X-4p. PDF/X restrictions and requirements are enforced as far as possible, which may cause configuration
 settings to be overridden or conversions to fail with an error message describing non-compliant content or settings that have to be resolved manually. The
 restrictions and requirements of PDF/X include:

 	
 All Fonts must be embedded.

	
 Multimedia content and non-printable annotations are prohibited.

	
 Encryption is prohibited.

	
 No scripts may be embedded. (This does not affect JavaScript in the input document.)

	

 Transparency is prohibited (except in PDF/X-4), see image alpha channels in PDF/A-1.

	

 Colors must be specified as CMYK, gray, keywords or spot. (PDF/X-3 relaxes this restriction to
 allow RGB. However, this requires ICC profile based conversion, which not every print workflow can handle.)

	

 An output intent is required, consisting of an output condition identifier string and an ICC profile. (Depending on the exact conformance and target
 environment it may be legal or required to omit the ICC profile, as long as the identifier is known to the target environment. Constants for the default
 profiles of Adobe Acrobat Pro DC are available for usage with PDF/X-4p. Please note that the
 availability of these default profiles may vary between different versions of Acrobat Pro.) Please see .

	

 The title metadata is required. Usually, it is set by the document's title element, but it can also be set by the CSS property
 -ro-title. The third option is to set it via the configuration property title. Please see .

 To create a PDF/X conformant document, the configuration property conformance can be
 used in the PDFreactor integration, e.g.:

 config.setConformance(Conformance.PDFX4);

 config.Conformance = Conformance.PDFX4;

 $config["conformance"] = Conformance::PDFX4;

 config['conformance'] = PDFreactor.Conformance.PDFX4

 config['conformance'] = PDFreactor::Conformance::PDFX4

 config.conformance = PDFreactor.Conformance.PDFX4;

 config.conformance = PDFreactor.Conformance.PDFX4;

 $config["conformance"] = PDFreactor::Conformance->PDFX4;

 { "conformance": "PDFX4" }

 --conformance "PDFX4"

 ICC Profiles and Output Intents

 PDFreactor allows you to set the output intent of the PDF document, consisting of an identifier and an ICC profile. This is required for certain PDF/A and PDF/X conformance modes, with the ICC profile being optional in some cases. The example below
 demonstrates how to use the configuration property outputIntent:

 config.setOutputIntent(new OutputIntent()
 .setIdentifier("ICC profile identifier")

 // Use this if you are loading the ICC profile via URL (ignored if data is set)
 .setUrl("URL/to/ICC/profile")

 // Use this if you want to specify the ICC profile's binary data
 .setData(iccProfileByteArray)
);

 config.OutputIntent = new OutputIntent
{
 Identifier = "ICC profile identifier",

 // Use this if you are loading the ICC profile via URL (ignored if data is set)
 Url = "URL/to/ICC/profile",

 // Use this if you want to specify the ICC profile's binary data
 Data = iccProfileByteArray
};

 config.outputIntent = {
 identifier: "ICC profile identifier",

 // Use this if you are loading the ICC profile via URL (ignored if data is set)
 url: "URL/to/ICC/profile",

 // Use this if you want to specify the ICC profile's binary data as base64 string
 data: iccProfileBase64
};

 config.outputIntent = {
 identifier: "ICC profile identifier",

 // Use this if you are loading the ICC profile via URL (ignored if data is set)
 url: "URL/to/ICC/profile",

 // Use this if you want to specify the ICC profile's binary data as base64 string
 data: iccProfileBase64
};

 $config["outputIntent"] = array(
 "identifier" => "ICC profile identifier",

 // Use this if you are loading the ICC profile via URL (ignored if data is set)
 "url" => "URL/to/ICC/profile",

 // Use this if you want to specify the ICC profile's binary data as base64 string
 "data" => iccProfileBase64
);

 config['outputIntent'] = {
 'identifier': "ICC profile identifier",

 # Use this if you are loading the ICC profile via URL (ignored if data is set)
 'url': "URL/to/ICC/profile",

 # Use this if you want to specify the ICC profile's binary data as base64 string
 'data': iccProfileBase64
}

 config['outputIntent'] = {
 identifier: "ICC profile identifier",

 # Use this if you are loading the ICC profile via URL (ignored if data is set)
 url: "URL/to/ICC/profile",

 # Use this if you want to specify the ICC profile's binary data as base64 string
 data: iccProfileBase64
}

 $config["outputIntent"] = {
 "identifier" => "ICC profile identifier",

 # Use this if you are loading the ICC profile via URL (ignored if data is set)
 "url" => "URL/to/ICC/profile",

 # Use this if you want to specify the ICC profile's binary data as base64 string
 "data" => iccProfileBase64
};

 { "outputIntent": {
 "identifier": "ICC profile identifier",
 "url": "URL/to/ICC/profile",
 "data": iccProfileBase64
}}

 -C config.json

 With the following config.json:

 { "outputIntent": {
 "identifier": "ICC profile identifier",
 "url": "URL/to/ICC/profile",
 "data": iccProfileBase64
}}

 The property identifier sets a string identifying the intended output device or production condition in human- or
 machine-readable form. The property url points to an ICC profile file and the property data sets the
 binary data of such a profile, the latter having priority.

 The color space of the output intent profile overrides the target color space.

 Color Space Conversion

 In cases when output PDF documents must consist only of colors and images of a certain color space,
 but not all input documents and resources match that, you can enable color space conversion.
 For example, you can convert all CSS colors and images to CMYK with a specified ICC profile matching the output intent of a PDF/A or a PDF/X for printing:

 // The required output intent
config.setOutputIntent(new OutputIntent()
 .setIdentifier("ICC profile identifier")
 .setUrl("URL/to/ICC/profile"));
// Color space conversion settings
config.setColorSpaceSettings(new ColorSpaceSettings()
 // The same profile as the output intent, required for accurate conversion to CMYK
 .setCmykIccProfile(new Resource().setUri("URL/to/ICC/profile"))
 // Not necessary to set in this case (overridden by output intent), but recommended
 .setTargetColorSpace(ColorSpace.CMYK)
 // Enable conversion of RGB colors and images to CMYK
 .setConversionEnabled(true));

 // The required output intent
config.OutputIntent = new OutputIntent()
{
 Identifier = "ICC profile identifier",
 Url = "URL/to/ICC/profile"
};
// Color space conversion settings
config.ColorSpaceSettings = new ColorSpaceSettings
{
 // The same profile as the output intent, required for accurate conversion to CMYK
 CmykIccProfile = new Resource() { Uri = "URL/to/ICC/profile" },
 // Not necessary to set in this case (overridden by output intent), but recommended
 TargetColorSpace = ColorSpace.CMYK,
 // Enable conversion of RGB colors and images to CMYK
 ConversionEnabled = true
};

 // The required output intent
config.outputIntent = {
 identifier: "ICC profile identifier",
 url: "URL/to/ICC/profile"
};
// Color space conversion settings
config.colorSpaceSettings = {
 // The same profile as the output intent, required for accurate conversion to CMYK
 cmykIccProfile: { uri: "URL/to/ICC/profile" },
 // Not necessary to set in this case (overridden by output intent), but recommended
 targetColorSpace: PDFreactor.ColorSpace.CMYK,
 // Enable conversion of RGB colors and images to CMYK
 conversionEnabled: true
};

 // The required output intent
config.outputIntent = {
 identifier: "ICC profile identifier",
 url: "URL/to/ICC/profile"
};
// Color space conversion settings
config.colorSpaceSettings = {
 // The same profile as the output intent, required for accurate conversion to CMYK
 cmykIccProfile: { uri: "URL/to/ICC/profile" },
 // Not necessary to set in this case (overridden by output intent), but recommended
 targetColorSpace: PDFreactor.ColorSpace.CMYK,
 // Enable conversion of RGB colors and images to CMYK
 conversionEnabled: true
};

 // The required output intent
$config["outputIntent"] = array(
 "identifier" => "ICC profile identifier",
 "url" => "URL/to/ICC/profile"
);
// Color space conversion settings
$config["colorSpaceSettings"] = array(
 // The same profile as the output intent, required for accurate conversion to CMYK
 "cmykIccProfile" => array("uri" => "URL/to/ICC/profile"),
 // Not necessary to set in this case (overridden by output intent), but recommended
 "targetColorSpace" => ColorSpace::CMYK,
 // Enable conversion of RGB colors and images to CMYK
 "conversionEnabled" => true
);

 # The required output intent
config['outputIntent'] = {
 'identifier': "ICC profile identifier",
 'url': "URL/to/ICC/profile"
}
Color space conversion settings
config['colorSpaceSettings'] = {
 # The same profile as the output intent, required for accurate conversion to CMYK
 'cmykIccProfile': { 'uri': "URL/to/ICC/profile" },
 # Not necessary to set in this case (overridden by output intent), but recommended
 'targetColorSpace': PDFreactor.ColorSpace.CMYK,
 # Enable conversion of RGB colors and images to CMYK
 'conversionEnabled' True
}

 # The required output intent
config['outputIntent'] = {
 identifier: "ICC profile identifier",
 url: "URL/to/ICC/profile"
}
Color space conversion settings
config['colorSpaceSettings'] = {
 # The same profile as the output intent, required for accurate conversion to CMYK
 cmykIccProfile: { uri: "URL/to/ICC/profile" },
 # Not necessary to set in this case (overridden by output intent), but recommended
 targetColorSpace: PDFreactor::ColorSpace::CMYK,
 # Enable conversion of RGB colors and images to CMYK
 conversionEnabled True
}

 # The required output intent
$config["outputIntent"] = {
 "identifier" => "ICC profile identifier",
 "url" => "URL/to/ICC/profile"
};
Color space conversion settings
$config["colorSpaceSettings"] = {
 # The same profile as the output intent, required for accurate conversion to CMYK
 "cmykIccProfile" => { "uri" => "URL/to/ICC/profile" },
 # Not necessary to set in this case (overridden by output intent), but recommended
 "targetColorSpace" => PDFreactor::ColorSpace->CMYK,
 # Enable conversion of RGB colors and images to CMYK
 "conversionEnabled" => true
};

 {
 "outputIntent": {
 "identifier": "ICC profile identifier",
 "url": "URL/to/ICC/profile"
 },
 "colorSpaceSettings": {
 "cmykIccProfile": { "uri": "URL/to/ICC/profile" },
 "targetColorSpace": "CMYK",
 "conversionEnabled": true
}

 You can also create a web version, which is smaller and in RGB:

 // (No output intent required)
// Color space conversion settings
config.setColorSpaceSettings(new ColorSpaceSettings()
 // When converting to RGB the profile is used for accurate conversion from CMYK
 .setCmykIccProfile(new Resource().setUri("URL/to/ICC/profile"))
 // Not necessary to set in this case (default), but recommended
 .setTargetColorSpace(ColorSpace.RGB)
 // Enable conversion of CMYK colors and images to RGB
 .setConversionEnabled(true));
// Reduce image sizes by resampling and compression
config.setUserStyleSheets(new Resource().setContent(
 // downsample images that (in the final layout)
 // have a resolution of more then 200dpi
 "* { -ro-image-resampling: 200dpi; "
 // recompress all images to JPEG with a quality of 90%
 + "-ro-image-recompression: jpeg(90%) }"));

 // (No output intent required)
// Color space conversion settings
config.ColorSpaceSettings = new ColorSpaceSettings {
 // When converting to RGB the profile is used for accurate conversion from CMYK
 CmykIccProfile = new Resource() { Uri = "URL/to/ICC/profile" },
 // Not necessary to set in this case (default), but recommended
 TargetColorSpace = ColorSpace.RGB,
 // Enable conversion of CMYK colors and images to RGB
 ConversionEnabled = true
};
// Reduce image sizes by resampling and compression
config.UserStyleSheets = new List<Resource>
{
 new Resource
 {
 // downsample images that (in the final layout)
 // have a resolution of more then 200dpi
 // recompress all images to JPEG with a quality of 90%
 Content = "* { -ro-image-resampling: 200dpi; -ro-image-recompression: jpeg(90%) }"
 }
};

 // (No output intent required)
// Color space conversion settings
config.colorSpaceSettings = {
 // When converting to RGB the profile is used for accurate conversion from CMYK
 cmykIccProfile: { uri: "URL/to/ICC/profile" },
 // Not necessary to set in this case (default), but recommended
 targetColorSpace: PDFreactor.ColorSpace.RGB,
 // Enable conversion of CMYK colors and images to RGB
 conversionEnabled: true
};
// Reduce image sizes by resampling and compression
config.userStyleSheets = [{
 // downsample images that (in the final layout)
 // have a resolution of more then 200dpi
 // recompress all images to JPEG with a quality of 90%
 content: "* { -ro-image-resampling: 200dpi; -ro-image-recompression: jpeg(90%) }"
}];

 // (No output intent required)
// Color space conversion settings
config.colorSpaceSettings = {
 // When converting to RGB the profile is used for accurate conversion from CMYK
 cmykIccProfile: { uri: "URL/to/ICC/profile" },
 // Not necessary to set in this case (default), but recommended
 targetColorSpace: PDFreactor.ColorSpace.RGB,
 // Enable conversion of CMYK colors and images to RGB
 conversionEnabled: true
};
// Reduce image sizes by resampling and compression
config.userStyleSheets = [{
 // downsample images that (in the final layout)
 // have a resolution of more then 200dpi
 // recompress all images to JPEG with a quality of 90%
 content: "* { -ro-image-resampling: 200dpi; -ro-image-recompression: jpeg(90%) }"
}];

 // (No output intent required)
// Color space conversion settings
$config["colorSpaceSettings"] = array(
 // When converting to RGB the profile is used for accurate conversion from CMYK
 "cmykIccProfile" => array("uri" => "URL/to/ICC/profile"),
 // Not necessary to set in this case (default), but recommended
 "targetColorSpace" => ColorSpace::RGB,
 // Enable conversion of CMYK colors and images to RGB
 "conversionEnabled" => true
);
// Reduce image sizes by resampling and compression
$config["userStyleSheets"] = array(
 array(
 // downsample images that (in the final layout)
 // have a resolution of more then 200dpi
 // recompress all images to JPEG with a quality of 90%
 "content" => "* { -ro-image-resampling: 200dpi; -ro-image-recompression: jpeg(90%) }"
)
}];

 # (No output intent required)
Color space conversion settings
config['colorSpaceSettings'] = {
 # When converting to RGB the profile is used for accurate conversion from CMYK
 'cmykIccProfile': { 'uri': "URL/to/ICC/profile" },
 # Not necessary to set in this case (default), but recommended
 'targetColorSpace': PDFreactor.ColorSpace.RGB,
 # Enable conversion of CMYK colors and images to RGB
 'conversionEnabled': True
}
Reduce image sizes by resampling and compression
config.userStyleSheets = [{
 # downsample images that (in the final layout)
 # have a resolution of more then 200dpi
 # recompress all images to JPEG with a quality of 90%
 'content': "* { -ro-image-resampling: 200dpi; -ro-image-recompression: jpeg(90%) }"
}]

 # (No output intent required)
Color space conversion settings
config.colorSpaceSettings = {
 # When converting to RGB the profile is used for accurate conversion from CMYK
 cmykIccProfile: { uri: "URL/to/ICC/profile" },
 # Not necessary to set in this case (default), but recommended
 targetColorSpace: PDFreactor::ColorSpace::RGB,
 # Enable conversion of CMYK colors and images to RGB
 conversionEnabled: true
}
Reduce image sizes by resampling and compression
config.userStyleSheets = [{
 # downsample images that (in the final layout)
 # have a resolution of more then 200dpi
 # recompress all images to JPEG with a quality of 90%
 content: "* { -ro-image-resampling: 200dpi; -ro-image-recompression: jpeg(90%) }"
}]

 # (No output intent required)
Color space conversion settings
$config["colorSpaceSettings"] = {
 # When converting to RGB the profile is used for accurate conversion from CMYK
 "cmykIccProfile" => { "uri": "URL/to/ICC/profile" },
 # Not necessary to set in this case (default), but recommended
 "targetColorSpace" => PDFreactor::ColorSpace->RGB,
 # Enable conversion of CMYK colors and images to RGB
 "conversionEnabled" => true
};
Reduce image sizes by resampling and compression
$config.userStyleSheets = [{
 # downsample images that (in the final layout)
 # have a resolution of more then 200dpi
 # recompress all images to JPEG with a quality of 90%
 "content" => "* { -ro-image-resampling: 200dpi; -ro-image-recompression: jpeg(90%) }"
}];

 {
 "colorSpaceSettings": {
 "cmykIccProfile": { "uri": "URL/to/ICC/profile" },
 "targetColorSpace": "RGB",
 "conversionEnabled": true
 },
 "userStyleSheets": [{
 "content": "* { -ro-image-resampling: 200dpi; -ro-image-recompression: jpeg(90%) }"
 }
}

 -C config.json

 With the following config.json:

 {
 "colorSpaceSettings": {
 "cmykIccProfile": { "uri": "URL/to/ICC/profile" },
 "targetColorSpace": "RGB",
 "conversionEnabled": true
 },
 "userStyleSheets": [{
 "content": "* { -ro-image-resampling: 200dpi; -ro-image-recompression: jpeg(90%) }"
 }
}

 If "cmykIccProfile" is not set, naive conversion, similar to the one of PDF viewers, is used.

 Print Dialog Prompt

 PDFreactor can be configured to immediately display a print dialog when a PDF file created with PDFreactor
 is opened. To do so, the printDialogPrompt configuration property must be used:

 config.setPrintDialogPrompt(true);

 config.PrintDialogPrompt = true;

 $config["printDialogPrompt"] = true;

 config['printDialogPrompt'] = True

 config['printDialogPrompt'] = true

 config.printDialogPrompt = true;

 config.printDialogPrompt = true;

 $config["printDialogPrompt"] = true;

 { "printDialogPrompt": true }

 --printDialogPrompt

 PDF Compression

 Using the configuration property fullCompression, PDF files can be generated with full compression, thus reducing the file size of the resulting PDF document.

 Example usage:

 config.setFullCompression(true);

 config.FullCompression = true;

 $config["fullCompression"] = true;

 config['fullCompression'] = True

 config['fullCompression'] = true

 config.fullCompression = true;

 config.fullCompression = true;

 $config["fullCompression"] = true;

 { "fullCompression": true }

 --fullCompression

 Your PDF reader needs to support Adobe PDF version 1.5 in order to be able to display PDF documents created with full compression enabled.

 This lossless compression generally has little impact on the size of images. However, it is possible to use proprietary CSS properties to significantly
 reduce the resolution and quality of images and thus the file size of the PDF. See and for
 more information.

 Full compression also eliminates some inherent size limitations of the PDF format,
 see .

 Encryption and Restrictions

 PDFreactor can protect generated PDF documents via 40 or 128 bit encryption.

 To encrypt the output PDF, set the encryption strength to a value other than ENCRYPTION_NONE:

 config.setEncryption(Encryption.TYPE_128);

 config.Encryption = Encryption.TYPE_128;

 $config["encryption"] = Encryption::TYPE_128;

 config['encryption'] = PDFreactor.Encryption.TYPE_128

 config['encryption'] = PDFreactor::Encryption::TYPE_128

 config.encryption = PDFreactor.Encryption.TYPE_128;

 config.encryption = PDFreactor.Encryption.TYPE_128;

 $config["encryption"] = PDFreactor::Encryption->TYPE_128;

 { "encryption": "TYPE_128" }

 --encryption "TYPE_128"

 When the PDF document is opened, the user has to supply the user password in order to view the content. When no user password is set, the PDF can be viewed
 by any user. In either case, certain restrictions are imposed. These can be suspended by supplying the owner password. You can set the passwords as follows:

 config
 .setUserPassword("upasswd")
 .setOwnerPassword("opasswd");

 config.UserPassword = "upasswd";
config.OwnerPassword = "opasswd";

 $config["userPassword"] = "upasswd";
$config["ownerPassword"] = "opasswd";

 config['userPassword'] = "upasswd"
config['ownerPassword'] = "opasswd"

 config['userPassword'] = "upasswd"
config['ownerPassword'] = "opasswd"

 config.userPassword = "upasswd";
config.ownerPassword = "opasswd";

 config.userPassword = "upasswd";
config.ownerPassword = "opasswd";

 $config["userPassword"] = "upasswd";
$config["ownerPassword"] = "opasswd";

 { "userPassword": "upasswd"
 "ownerPassword": "opasswd" }

 --userPassword "upasswd" \
--ownerPassword: "opasswd"

 Though not recommended for security reasons, both passwords can be omitted. However, the owner password must be specified for certain
 postprocessing steps, e.g. for digital signing or merging.

 By default, all restrictions are imposed on the PDF document. You can, however, exclude selected ones by using the following configuration properties:

 List of configuration properties to disable restrictions	Property name	Allows ...
	allowPrinting	printing
	allowCopy	copying or otherwise extracting content
	allowAnnotations	adding or modifying annotations and interactive form fields
	allowModifyContents	modifying the content of the document
	allowDegradedPrinting	printing (same as allowPrinting, however, with a limited resolution) (128 bit encryption only)

	allowFillIn	filling in form fields (128 bit encryption only)
	allowAssembly	inserting, removing and rotating pages and adding bookmarks (128 bit encryption only)
	allowScreenReaders	extracting content for use by accessibility devices (128 bit encryption only)

 API docs for further information.

 Viewer Preferences

 You can configure the initial presentation of the document in the viewer by setting viewer preferences. Setting viewer preferences will activate / deactivate
 certain options of the viewer, for example it allows to hide the viewer's toolbar when the document is opened.

 Note that these preferences are not enforced, i.e. if you decide to set the HIDE_TOOLBAR preference, the user can still display the
 toolbar again when viewing this PDF if he decides to do so. Setting this preference only affects the default state of the toolbar when the document is opened,
 but does not enforce this state.

 Some viewer preferences also influence the default settings of the print dialog of the viewer.

 You can set viewer preferences by using the configuration property viewerPreferences, e.g.:

 config.setViewerPreferences(ViewerPreferences.PAGE_LAYOUT_SINGLE_PAGE,
 ViewerPreferences.DISPLAY_DOC_TITLE);

 config.ViewerPreferences = new List<ViewerPreferences>
{
 ViewerPreferences.PAGE_LAYOUT_SINGLE_PAGE,
 ViewerPreferences.DISPLAY_DOC_TITLE
};

 $config["viewerPreferences"] = new array(
 ViewerPreferences::PAGE_LAYOUT_SINGLE_PAGE
 ViewerPreferences::DISPLAY_DOC_TITLE
);

 config['viewerPreferences'] = [
 PDFreactor.ViewerPreferences.PAGE_LAYOUT_SINGLE_PAGE
 PDFreactor.ViewerPreferences.DISPLAY_DOC_TITLE
]

 config['viewerPreferences'] = [
 PDFreactor::ViewerPreferences::PAGE_LAYOUT_SINGLE_PAGE
 PDFreactor::ViewerPreferences::DISPLAY_DOC_TITLE
]

 config.viewerPreferences = [
 PDFreactor.ViewerPreferences.PAGE_LAYOUT_SINGLE_PAGE
 PDFreactor.ViewerPreferences.DISPLAY_DOC_TITLE
];

 config.viewerPreferences = [
 PDFreactor.ViewerPreferences.PAGE_LAYOUT_SINGLE_PAGE
 PDFreactor.ViewerPreferences.DISPLAY_DOC_TITLE
];

 $config["viewerPreferences"] = [
 PDFreactor::ViewerPreferences->PAGE_LAYOUT_SINGLE_PAGE
 PDFreactor::ViewerPreferences->DISPLAY_DOC_TITLE
];

 { "viewerPreferences" = ["PAGE_LAYOUT_SINGLE_PAGE", "DISPLAY_DOC_TITLE"]}

 --viewerPreferences "PAGE_LAYOUT_SINGLE_PAGE" "DISPLAY_DOC_TITLE"

 PDFreactor supports the following viewer preferences:

 List of Viewer Preferences	Viewer Preference	Effect
	PAGE_LAYOUT_SINGLE_PAGE	Display one page at a time.
	PAGE_LAYOUT_ONE_COLUMN	Display the pages in one column.
	PAGE_LAYOUT_TWO_COLUMN_LEFT	Display the pages in two columns, with odd numbered pages on the left.
	PAGE_LAYOUT_TWO_COLUMN_RIGHT	Display the pages in two columns, with odd numbered pages on the right.
	PAGE_LAYOUT_TWO_PAGE_LEFT	Display two pages at a time, with odd numbered pages on the left.
	PAGE_LAYOUT_TWO_PAGE_RIGHT	Display two pages at a time, with odd numbered pages on the right.
	PAGE_MODE_USE_NONE	Show no panel on startup.
	PAGE_MODE_USE_OUTLINES	Show bookmarks panel on startup.
	PAGE_MODE_USE_THUMBS	Show thumbnail images panel on startup.
	PAGE_MODE_FULLSCREEN	Switch to full screen mode on startup.
	PAGE_MODE_USE_OC	Show optional content group panel on startup.
	PAGE_MODE_USE_ATTACHMENTS	Show attachments panel on startup.
	HIDE_TOOLBAR	Hide the viewer application's tool bars when the document is active.
	HIDE_MENUBAR	Hide the viewer application's menu bar when the document is active.
	HIDE_WINDOW_UI	Hide user interface elements in the document's window.
	FIT_WINDOW	Resize the document's window to fit the size of the first displayed page
	CENTER_WINDOW	Position the document's window in the center of the screen.
	DISPLAY_DOC_TITLE	Display the document's title in the top bar.
	NON_FULLSCREEN_PAGE_MODE_USE_NONE	Show no panel on exiting full-screen mode. Has to be combined with PageModeFullScreen.
	NON_FULLSCREEN_PAGE_MODE_USE_OUTLINES	Show bookmarks panel on exiting full-screen mode. Has to be combined with PageModeFullScreen.
	NON_FULLSCREEN_PAGE_MODE_USE_THUMBS	Show thumbnail images panel on exiting full-screen mode. Has to be combined with PageModeFullScreen.
	NON_FULLSCREEN_PAGE_MODE_USE_OC	Show optional content group panel on exiting full-screen mode. Has to be combined with PageModeFullScreen.
	DIRECTION_L2R	Position pages in ascending order from left to right.
	DIRECTION_R2L	Position pages in ascending order from right to left.
	PRINTSCALING_NONE	Print dialog default setting: disabled scaling
	PRINTSCALING_APPDEFAULT	Print dialog default setting: set scaling to application default value
	DUPLEX_SIMPLEX	Print dialog default setting: simplex
	DUPLEX_FLIP_SHORT_EDGE	Print dialog default setting: duplex (short edge)
	DUPLEX_FLIP_SHORT_EDGE	Print dialog default setting: duplex (long edge)
	PICKTRAYBYPDFSIZE_FALSE	Print dialog default setting: do not pick tray by PDF size
	PICKTRAYBYPDFSIZE_TRUE	Print dialog default setting: pick tray by PDF size

 The PAGE_LAYOUT_ preferences are overridden by the @-ro-preferences properties
 and .

 Merging PDFs

 A generated PDF can easily be merged with existing ones. To merge with a single PDF or multiple PDFs use the mergeDocuments
 configuration property that declares either URLs to or binary data of existing PDF files.

 config.setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/overlaid1.pdf"),
 new Resource().setData(pdfBytes));

 config.MergeDocuments = new List<Resource>
{
 new Resource { Uri = "https://www.myserver.com/overlaid1.pdf" },
 new Resource { Data = pdfBytes }
};

 $config["mergeDocuments"] = array(
 array("uri" => "https://www.myserver.com/overlaid1.pdf"),
 array("data" => pdfBytesAsBase64)
);

 config['mergeDocuments'] = [
 { 'uri': "https://www.myserver.com/overlaid1.pdf" },
 { 'data': pdfBytesAsBase64 }
]

 config['mergeDocuments'] = [
 { uri: "https://www.myserver.com/overlaid1.pdf" },
 { data: pdfBytesAsBase64 }
]

 config.mergeDocuments = [
 { uri: "https://www.myserver.com/overlaid1.pdf" },
 { data: pdfBytesAsBase64 }
];

 config.mergeDocuments = [
 { uri: "https://www.myserver.com/overlaid1.pdf" },
 { data: pdfBytesAsBase64 }
];

 config["mergeDocuments"] = [
 { "uri" => "https://www.myserver.com/overlaid1.pdf" },
 { "data" => pdfBytesAsBase64 }
];

 { "mergeDocuments": [
 { "uri": "https://www.myserver.com/overlaid1.pdf" },
 { "data": pdfBytesAsBase64 }
]}

 -C config.json

 With the following config.json:

 { "mergeDocuments": [
 { "uri": "https://www.myserver.com/overlaid1.pdf" },
 { "data": pdfBytesAsBase64 }
]}

 Whether the generated PDF is appended or laid over the existing PDFs depends on the general type of merge:

 	
 Concatenation

	
 Arrange

	
 Overlay

 Concatenation merges append the generated PDF before or after the existing ones. The following sample shows how to append the generated PDF after the
 existing one:

 config
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/appendDoc.pdf"))
 .setMergeMode(MergeMode.APPEND);

 config.MergeDocuments = new List<Resource>
{
 new Resource { Uri = "https://www.myserver.com/appendDoc.pdf" }
};
config.MergeMode = MergeMode.APPEND;

 $config["mergeDocuments"] = array(
 array("uri" => "https://www.myserver.com/appendDoc.pdf")
);
$config["mergeMode"] = MergeMode::APPEND;

 config['mergeDocuments'] = [
 { 'uri': "https://www.myserver.com/appendDoc.pdf" }
]
config['mergeMode'] = PDFreactor.MergeMode.APPEND

 config['mergeDocuments'] = [
 { uri: "https://www.myserver.com/appendDoc.pdf" }
]
config['mergeMode'] = PDFreactor::MergeMode::APPEND

 config.mergeDocuments = [
 { uri: "https://www.myserver.com/appendDoc.pdf" }
];
config.mergeMode = PDFreactor.MergeMode.APPEND;

 config.mergeDocuments = [
 { uri: "https://www.myserver.com/appendDoc.pdf" }
];
config.mergeMode = PDFreactor.MergeMode.APPEND;

 $config["mergeDocuments"] = [
 { "uri" => "https://www.myserver.com/appendDoc.pdf" }
];
$config["mergeMode"] = PDFreactor::MergeMode->APPEND;

 { "mergeDocuments": [
 { "uri": "https://www.myserver.com/appendDoc.pdf" }
], "mergeMode": "APPEND" }

 -C config.json

 With the following config.json:

 { "mergeDocuments": [
 { "uri": "https://www.myserver.com/appendDoc.pdf" }
], "mergeMode": "APPEND" }

 To append the generated PDF before the existing ones use MergeMode.PREPEND.

 Arrange inserts specified pages of PDFs into the generated PDF. This merge mode has to be combined with pageOrder (see) in order to specify which page should be inserted where. The following sample shows how to
 insert the first page of an existing PDF after the second page of the generated one:

 config
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/insertionDoc.pdf"))
 .setMergeMode(MergeMode.ARRANGE)
 .setPageOrder("1,1:1,2..-1");

 config.MergeDocuments = new List<Resource>
{
 new Resource { Uri = "https://www.myserver.com/insertionDoc.pdf" }
};
config.MergeMode = MergeMode.ARRANGE;
config.PageOrder = "1,1:1,2..-1";

 $config["mergeDocuments"] = array(
 array("uri" => "https://www.myserver.com/insertionDoc.pdf")
);
$config["mergeMode"] = MergeMode::ARRANGE;
$config["pageOrder"] = "1,1:1,2..-1";

 config['mergeDocuments'] = [
 { 'uri': "https://www.myserver.com/insertionDoc.pdf" }
]
config['mergeMode'] = PDFreactor.MergeMode.ARRANGE
config['pageOrder'] = "1,1:1,2..-1"

 config['mergeDocuments'] = [
 { uri: "https://www.myserver.com/insertionDoc.pdf" }
]
config['mergeMode'] = PDFreactor::MergeMode::ARRANGE
config['pageOrder'] = "1,1:1,2..-1"

 config.mergeDocuments = [
 { uri: "https://www.myserver.com/insertionDoc.pdf" }
];
config.mergeMode = PDFreactor.MergeMode.ARRANGE;
config.pageOrder = "1,1:1,2..-1";

 config.mergeDocuments = [
 { uri: "https://www.myserver.com/insertionDoc.pdf" }
];
config.mergeMode = PDFreactor.MergeMode.ARRANGE;
config.pageOrder = "1,1:1,2..-1";

 $config["mergeDocuments"] = [
 { "uri" => "https://www.myserver.com/insertionDoc.pdf" }
];
$config["mergeMode"] = PDFreactor::MergeMode->ARRANGE;
$config["pageOrder"] = "1,1:1,2..-1";

 { "mergeDocuments": [
 { "uri": "https://www.myserver.com/insertionDoc.pdf" }
], "mergeMode": "ARRANGE",
 "pageOrder": "1,1:1,2..-1" }

 -C config.json

 With the following config.json:

 { "mergeDocuments": [
 { "uri": "https://www.myserver.com/insertionDoc.pdf" }
], "mergeMode": "ARRANGE",
 "pageOrder": "1,1:1,2..-1" }

 More information on the syntax can be found at

 Overlay merges add the generated PDF above or below existing PDFs. The following sample shows how to overlay an existing PDF:

 config
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/appendDoc.pdf"))
 .setMergeMode(MergeMode.OVERLAY);

 config.MergeDocuments = new List<Resource>
{
 new Resource { Uri = "https://www.myserver.com/overlaid.pdf" }
};
config.MergeMode = MergeMode.OVERLAY;

 $config["mergeDocuments"] = array(
 array("uri" => "https://www.myserver.com/overlaid.pdf")
);
$config["mergeMode"] = MergeMode::OVERLAY;

 config['mergeDocuments'] = [
 { 'uri': "https://www.myserver.com/overlaid.pdf" }
]
config['mergeMode'] = PDFreactor.MergeMode.OVERLAY

 config['mergeDocuments'] = [
 { uri: "https://www.myserver.com/overlaid.pdf" }
]
config['mergeMode'] = PDFreactor::MergeMode::OVERLAY

 config.mergeDocuments = [
 { uri: "https://www.myserver.com/overlaid.pdf" }
];
config.mergeMode = PDFreactor.MergeMode.OVERLAY;

 config.mergeDocuments = [
 { uri: "https://www.myserver.com/overlaid.pdf" }
];
config.mergeMode = PDFreactor.MergeMode.OVERLAY;

 $config["mergeDocuments"] = [
 { "uri" => "https://www.myserver.com/overlaid.pdf" }
];
$config["mergeMode"] = PDFreactor::MergeMode->OVERLAY;

 { "mergeDocuments": [
 { "uri": "https://www.myserver.com/overlaid.pdf" }
], "mergeMode": "OVERLAY" }

 -C config.json

 With the following config.json:

 { "mergeDocuments": [
 { "uri": "https://www.myserver.com/overlaid.pdf" }
], "mergeMode": "OVERLAY" }

 To add the generated PDF below the existing one use MergeMode.OVERLAY_BELOW.

 PDFreactor allows to repeat the pages of PDFs with less pages than other PDFs involved in the merger. The configuration property overlayRepeat offers different options to do this:

 	
 repeat only the last page

	
 repeat all pages of the PDF

	
 do not repeat any pages

	
 trim to page count of the shorter document

 In the following example, all pages are repeated:

 config.setOverlayRepeat(OverlayRepeat.ALL_PAGES);

 config.OverlayRepeat = OverlayRepeat.ALL_PAGES;

 $config["overlayRepeat"] = OverlayRepeat::ALL_PAGES;

 config['overlayRepeat'] = PDFreactor.OverlayRepeat.ALL_PAGES

 config['overlayRepeat'] = PDFreactor::OverlayRepeat::ALL_PAGES

 config.overlayRepeat = PDFreactor.OverlayRepeat.ALL_PAGES;

 config.overlayRepeat = PDFreactor.OverlayRepeat.ALL_PAGES;

 $config["overlayRepeat"] = PDFreactor::OverlayRepeat->ALL_PAGES;

 { "overlayRepeat": "ALL_PAGES" }

 --overlayRepeat "ALL_PAGES"

 The default merge behavior of PDFreactor is a concatenation after the pages of the existing PDFs.

 Digital Signing

 PDFreactor is able to sign the PDFs it creates. This allows to validate the identity of the creator of the document. A
 self-signed certificate may be used. A keystore file in which the certificate is included, is required to sign PDFs with PDFreactor.

 The keystore type is required to be one of the following formats:

 	
 "pkcs12"

	
 "jks"

 To create a keystore from certificate(s) or read information of an existing keystore such as the keyAlias, the Oracle Keytool can be used.

 PDFreactor supports various certificates types to sign a PDF such as self-signed certificates. Please see the API documentation for details on these modes.

 To sign a PDF digitally use the configuration property signPDF:

 config.setSignPDF(
new SignPDF()
 .setKeyAlias("keyAlias")
 .setKeystorePassword("keyStorePassword")
 .setKeystoreType(KeystoreType.JKS)
 .setKeystoreURL("http://myServer/Keystore.jks")
 .setSigningMode(SigningMode.SELF_SIGNED));

 config.SignPDF = new SignPDF
{
 KeyAlias = "keyAlias",
 KeystorePassword = "keyStorePassword",
 KeystoreType = KeystoreType.JKS,
 KeystoreURL = "http://myServer/Keystore.jks",
 SigningMode = SigningMode.SELF_SIGNED
};

 $config["signPDF"] = array(
 "keyAlias" => "keyAlias",
 "keystorePassword" => "keyStorePassword",
 "keystoreType" => KeystoreType::JKS,
 "keystoreURL" => "http://myServer/Keystore.jks",
 "signingMode" => SigningMode::SELF_SIGNED
);

 config['signPDF'] = {
 'keyAlias': "keyAlias",
 'keystorePassword': "keyStorePassword",
 'keystoreType': PDFreactor.KeystoreType.JKS,
 'keystoreURL': "http://myServer/Keystore.jks",
 'signingMode': PDFreactor.SigningMode.SELF_SIGNED
}

 config['signPDF'] = {
 keyAlias: "keyAlias",
 keystorePassword: "keyStorePassword",
 keystoreType: PDFreactor::KeystoreType::JKS,
 keystoreURL: "http://myServer/Keystore.jks",
 signingMode: PDFreactor::SigningMode::SELF_SIGNED
}

 config.signPDF = {
 keyAlias: "keyAlias",
 keystorePassword: "keyStorePassword",
 keystoreType: PDFreactor.KeystoreType.JKS,
 keystoreURL: "http://myServer/Keystore.jks",
 signingMode: PDFreactor.SigningMode.SELF_SIGNED
};

 config.signPDF = {
 keyAlias: "keyAlias",
 keystorePassword: "keyStorePassword",
 keystoreType: PDFreactor.KeystoreType.JKS,
 keystoreURL: "http://myServer/Keystore.jks",
 signingMode: PDFreactor.SigningMode.SELF_SIGNED
};

 $config["signPDF"] = {
 "keyAlias" => "keyAlias",
 "keystorePassword" => "keyStorePassword",
 "keystoreType" => PDFreactor::KeystoreType->JKS,
 "keystoreURL" => "http://myServer/Keystore.jks",
 "signingMode" => PDFreactor::SigningMode->SELF_SIGNED
};

 { "signPDF": {
 "keyAlias": "keyAlias",
 "keystorePassword": "keyStorePassword",
 "keystoreType": PDFreactor.KeystoreType.JKS,
 "keystoreURL": "http://myServer/Keystore.jks",
 "signingMode": PDFreactor.SigningMode.SELF_SIGNED
}}

 -C config.json

 With the following config.json:

 { "signPDF": {
 "keyAlias": "keyAlias",
 "keystorePassword": "keyStorePassword",
 "keystoreType": PDFreactor.KeystoreType.JKS,
 "keystoreURL": "http://myServer/Keystore.jks",
 "signingMode": PDFreactor.SigningMode.SELF_SIGNED
}}

 To specify the keystoreURL as file URL use the following syntax: file:///path/to/Keystore.jks

 If a PDF is signed via the VeriSign signing mode, a plugin for the PDF viewer is required to show the signature.

 Font Embedding

 By default, PDFreactor automatically embeds the required subsets of all fonts used in the document. This can be disable using
 the configuration property disableFontEmbedding.

 config.setDisableFontEmbedding(true);

 config.DisableFontEmbedding = true;

 $config["disableFontEmbedding"] = true;

 config['disableFontEmbedding'] = True

 config['disableFontEmbedding'] = true

 config.disableFontEmbedding = true;

 config.disableFontEmbedding = true;

 $config["disableFontEmbedding"] = true;

 { "disableFontEmbedding": true }

 --disableFontEmbedding

 Doing so reduces the file size of the resulting PDF documents. However, these documents are likely to not look the same on all systems. Therefore this property
 should only be used when necessary.

 Overprinting

 Overprinting means that one color is printed on top of another color. For example, a background is printed completely, before the text is put on top.
 As this is a feature for printing it should be used with CMYK colors.

 PDFreactor can set the values of the PDF graphics state parameters "overprint" and "overprint mode" via CSS. However, before the CSS properties have any effect,
 overprinting must first be enabled via the configuration property addOverprint:

 config.setAddOverprint(true);

 config.AddOverprint = true;

 $config["addOverprint"] = true;

 config['addOverprint'] = True

 config['addOverprint'] = true

 config.addOverprint = true;

 config.addOverprint = true;

 $config["addOverprint"] = true;

 { "addOverprint": true }

 --addOverprint

 Then using the styles -ro-pdf-overprint and -ro-pdf-overprint-content
 you can specify the overprint properties of elements and their content to either none (default), mode0 or mode1
 (nonzero overprint mode).

 -ro-pdf-overprint affects the entire element, while -ro-pdf-overprint-content only affects the content
 of the element (not its borders and backgrounds). In both cases the children of the element are affected entirely, unless overprint styles are applied to them
 as well.

 The following example sets small text on solid background to overprint, without enabling overprinting for the background of either the paragraphs or the
 highlighting spans:

 p.infobox {
 border: 1pt solid black;
 background-color: lightgrey;
 color: black;
 font-size: 8pt;
 -ro-pdf-overprint-content: mode1;
}
p.infobox span.marked {
 background-color: yellow;
 -ro-pdf-overprint: none;
 -ro-pdf-overprint-content: mode1;
}

 When having small text with a background, overprinting can be very helpful to avoid white lines around the text, if the printing registration is
 imperfect.

 Attachments

 Alternatively to linking to external URLs (see) PDFreactor also
 allows embedding their content into the PDF.

 Attachments can be defined via CSS, which can be enabled by the configuration property addAttachments:

 config.setAddAttachments(true);

 config.AddAttachments = true;

 $config["addAttachments"] = true;

 config['addAttachments'] = True

 config['addAttachments'] = true

 config.addAttachments = true;

 config.addAttachments = true;

 $config["addAttachments"] = true;

 { "addAttachments": true }

 --addAttachments

 The following styles can be used to specify attachments:

 	

 :

 A URL pointing to the file to be embedded. This URL can be relative.

	

 :

 The file name associated with the attachment. It is recommended to specify the correct file extension. If this is not specified the name is derived
 from the URL.

	

 :

 The description of the attachment. If this is not specified the name is used.

	

 :

 	

 element (default): The attachment is related to the area of the element. Viewers may show a marker near that area.

	

 document: The file is attached to the document with no relation to the element.

 Attachments can be specified for specific elements as follows:

 #downloadReport {
 -ro-pdf-attachment-url: "../resources/0412/report.doc";
 -ro-pdf-attachment-name: "report-2012-04.doc";
 -ro-pdf-attachment-description: "Report for April of 2012";
}

 Strings can be dynamically read from the document using the CSS functions attr and , that read specified attributes or the text content of the element respectively. Using those, certain a-tags can be changed from links to attachments:

 .downloadReports a[href] {
 -ro-link: none;
 -ro-pdf-attachment-url: attr(href);
 -ro-pdf-attachment-description: content() " (" attr(href) ")";
}

 Attachments can also be set via the configuration property attachments. This configuration property also allows specifying the content of the attachment as
 a byte array instead of an URL, so dynamically created data can be attached:

 config.setAttachments(
 new Attachment()
 .setData("sample attachment text".getBytes())
 .setName("sample.txt")
 .setDescription("a dynamically created attachment containing text"),
 new Attachment()
 .setUrl("../resources/0412/report.doc")
 .setName("report-2012-04.doc")
 .setDescription("Report for April of 2012"));

 config.Attachments = new List<Attachment>
{
 new Attachment
 {
 Data = sampleAttachmentTextBytes
 Name = "sample.txt"
 Description = "a dynamically created attachment containing text"
 },
 new Attachment
 {
 Url = "../resources/0412/report.doc",
 Name = "report-2012-04.doc",
 Description = "Report for April of 2012"
 }
};

 $config["attachments"] = array(
 array(
 "data" => sampleAttachmentTextBytesAsBase64
 "name" => "sample.txt"
 "description" => "a dynamically created attachment containing text"
),
 array(
 "url" => "../resources/0412/report.doc",
 "name" => "report-2012-04.doc",
 "description" => "Report for April of 2012"
)
);

 config['attachments'] = [
 {
 'data': sampleAttachmentTextBytesAsBase64
 'name': "sample.txt"
 'description': "a dynamically created attachment containing text"
 },
 {
 'url': "../resources/0412/report.doc",
 'name': "report-2012-04.doc",
 'description': "Report for April of 2012"
 }
]

 config['attachments'] = [
 {
 data: sampleAttachmentTextBytesAsBase64
 name: "sample.txt"
 description: "a dynamically created attachment containing text"
 },
 {
 url: "../resources/0412/report.doc",
 name: "report-2012-04.doc",
 description: "Report for April of 2012"
 }
]

 config.attachments = [
 {
 data: sampleAttachmentTextBytesAsBase64
 name: "sample.txt"
 description: "a dynamically created attachment containing text"
 },
 {
 url: "../resources/0412/report.doc",
 name: "report-2012-04.doc",
 description: "Report for April of 2012"
 }
];

 config.attachments = [
 {
 data: sampleAttachmentTextBytesAsBase64
 name: "sample.txt"
 description: "a dynamically created attachment containing text"
 },
 {
 url: "../resources/0412/report.doc",
 name: "report-2012-04.doc",
 description: "Report for April of 2012"
 }
];

 $config["attachments"] = [
 {
 "data" => sampleAttachmentTextBytesAsBase64
 "name" => "sample.txt"
 "description" => "a dynamically created attachment containing text"
 },
 {
 "url" => "../resources/0412/report.doc",
 "name" => "report-2012-04.doc",
 "description" => "Report for April of 2012"
 }
];

 { "attachments": [
 {
 data: sampleAttachmentTextBytesAsBase64
 name: "sample.txt"
 description: "a dynamically created attachment containing text"
 },
 {
 url: "../resources/0412/report.doc",
 name: "report-2012-04.doc",
 description: "Report for April of 2012"
 }
]}

 -C config.json

 With the following config.json:

 { "attachments": [
 {
 data: sampleAttachmentTextBytesAsBase64
 name: "sample.txt"
 description: "a dynamically created attachment containing text"
 },
 {
 url: "../resources/0412/report.doc",
 name: "report-2012-04.doc",
 description: "Report for April of 2012"
 }
]}

 Attaching Debug Files

 PDFreactor offers a number of debug files containing useful information about the conversion, e.g. logs. These can be attached
 to the PDF by specifying a special URL for the attachment. Please refer to
 for an overview of all available debug files.
 Note that some debug files might require additional configuration options, such as .

 PDF Script

 This chapter refers to Scripts added to the resulting PDFs, processed by the PDF-viewer. There are also:

 	

 JavaScript in the input document, processed by PDFreactor like in a browser

	

 The JavaScript API that allows using PDFreactor from JavaScript in a browser

 Some PDF viewers (e.g. Adobe Reader) allow the execution of JavaScript, which has been added to the PDF. This way, the document can be changed and dynamic
 content can be added long after the conversion is complete. Of course the structure of the PDF is different from the HTML and addressing certain elements with
 PDF scripts has to be done differently.

 Please note, that support for PDF scripts is not wide spread among PDF reader software.

 PDFreactor allows two ways to add such scripts to the converted PDF. The scripts can be added using the configuration property pdfScriptAction.
 The parameters are the script as a string and the event which should trigger the script.

 The supported events are:

 	
 open: These scripts are triggered when opening the PDF in a viewer.

	
 close: These scripts are triggered when closing the PDF.

	
 before save: These events are triggered just before the viewer saves the PDF.

	
 after save: These events are triggered after the viewer has saved the PDF.

	
 before print: These events are triggered just before the viewer prints the PDF.

	
 after print: These events are triggered after the viewer has printed the PDF.

 These PDF scripts must not be confused with the JavaScript that is executed while creating the PDF. PDF scripts basically use the JavaScript syntax,
 however, they are executed (if this feature is supported and enabled by the viewer application) at a completely different time, e.g. when opening the PDF.

 The following PDF script will display a message prompt when the PDF is opened.

 config.setPdfScriptAction(new PdfScriptAction()
 .setScript("app.alert('hello');")
 .setTriggerEvent(PdfScriptTriggerEvent.OPEN));

 config.PdfScriptAction = new PdfScriptAction
{
 Script = "app.alert('hello');",
 TriggerEvent = PdfScriptTriggerEvent.OPEN
};

 $config["pdfScriptAction"] = array(
 "script" => "app.alert('hello');",
 "triggerEvent" => PdfScriptTriggerEvent::OPEN
);

 config['pdfScriptAction'] = {
 'script': "app.alert('hello');",
 'triggerEvent': PDFreactor.PdfScriptTriggerEvent.OPEN
}

 config['pdfScriptAction'] = {
 script: "app.alert('hello');",
 triggerEvent: PDFreactor::PdfScriptTriggerEvent::OPEN
}

 config.pdfScriptAction = {
 script: "app.alert('hello');",
 triggerEvent: PDFreactor.PdfScriptTriggerEvent.OPEN
};

 config.pdfScriptAction = {
 script: "app.alert('hello');",
 triggerEvent: PDFreactor.PdfScriptTriggerEvent.OPEN
};

 $config["pdfScriptAction"] = {
 "script" => "app.alert('hello');",
 "triggerEvent" => PDFreactor.PdfScriptTriggerEvent->OPEN
};

 { "pdfScriptAction": {
 "script": "app.alert('hello');",
 "triggerEvent": "OPEN"
}}

 -C config.json

 With the following config.json:

 { "pdfScriptAction": {
 "script": "app.alert('hello');",
 "triggerEvent": "OPEN"
}}

 The second way to set scripts is by using the proprietary CSS property pdf-script-action.
 By using this property, one can define the PDF scripts in the original document. For more information on this property, please see .

 Please note, that the PDF scripts set via the CSS property have a higher priority than those defined via API.

 For each trigger event there can be only one script. When setting scripts several times on the same event, only the last one set will be added to the PDF.

 Preview Images

 While most PDF viewers automatically generate page thumbnails to preview pages, PDFreactor can do this during the conversion and embed these preview images.
 This frees up PDF viewer resources and is especially useful for large documents. You can let PDFreactor create preview images with the
 addPreviewImages configuration property like this:

 config.setAddPreviewImages(true);

 config.AddPreviewImages = true;

 $config["addPreviewImages"] = true;

 config['addPreviewImages'] = True

 config['addPreviewImages'] = true

 config.addPreviewImages = true;

 config.addPreviewImages = true;

 $config["addPreviewImages"] = true;

 { "addPreviewImages": true }

 --addPreviewImages

 Custom XMP

 When using conformance such as PDF/A, PDF/X or PDF/UA as well
 as other features, PDFreactor automatically creates and appends an appropriate XMP to the generated PDF.

 Custom XMPs can be loaded via content or uri. You also need to specify a priority, which can be
 HIGH (which means that the custom XMP replaces the one generated by PDFreactor) or LOW (which means that the
 custom XMP is only attached if PDFreactor did not generate one).

 config.setXmp(new OutputFormat()
 .setPriority(XmpPriority.HIGH)
 .setUri("http://cdn/myXmp.xml"));

 config.Xmp = new OutputFormat {
 Priority = XmpPriority.HIGH,
 Uri = "http://cdn/myXmp.xml"
};

 $config["xmp"] = array(
 "priority" => XmpPriority::HIGH,
 "uri" => "http://cdn/myXmp.xml"
);

 config['xmp'] = {
 'priority': PDFreactor.XmpPriority.HIGH,
 'uri': 'http://cdn/myXmp.xml'
}

 config['xmp'] = {
 priority: PDFreactor::XmpPriority::HIGH,
 uri: 'http://cdn/myXmp.xml'
}

 config.xmp = {
 priority: PDFreactor.XmpPriority.HIGH,
 uri: "http://cdn/myXmp.xml"
};

 config.xmp = {
 priority: PDFreactor.XmpPriority.HIGH,
 uri: "http://cdn/myXmp.xml"
};

 $config["xmp"] = {
 "priority" => PDFreactor::XmpPriority->HIGH,
 "uri" => "http://cdn/myXmp.xml"
};

 { "xmp": {
 "priority": "HIGH",
 "uri": "http://cdn/myXmp.xml"
}}

 -C config.json

 With the following config.json:

 { "xmp": {
 "priority": "HIGH",
 "uri": "http://cdn/myXmp.xml"
}}

 When attaching a custom XMP with high priority (thus overriding the PDFreactor-generated XMP), conformance such as PDF/A cannot be guaranteed.

 Image Output

 In addition to PDF, PDFreactor, with the optional Raster Image Output, supports the following image output formats:

 	
 PNG (optionally with transparent background)

	
 JPEG

	
 GIF

	
 TIFF (supports multi-page images; can use the following compression methods: LZW, PackBits, Uncompressed, CCITT 1D, CCITT Group 3 & CCITT Group 4)

	
 BMP

 These can be selected using the configuration property outputFormat, e.g.:

 config.setOutputFormat(new OutputFormat()
 .setType(OutputType.PNG)
 .setWidth(512)
 .setHeight(-1));

 config.OutputFormat = new OutputFormat {
 Type = OutputType.PNG,
 Width = 512,
 Height = -1
};

 $config["outputFormat"] = array(
 "type" => OutputType::PNG,
 "width" => 512,
 "height" => -1
);

 config['outputFormat'] = {
 'type': PDFreactor.OutputType.PNG,
 'width': 512,
 'height': -1
}

 config['outputFormat'] = {
 type: PDFreactor::OutputType::PNG,
 width: 512,
 height: -1
}

 config.outputFormat = {
 type: PDFreactor.OutputType.PNG,
 width: 512,
 height: -1
};

 config.outputFormat = {
 type: PDFreactor.OutputType.PNG,
 width: 512,
 height: -1
};

 $config["outputFormat"] = {
 "type" => PDFreactor::OutputType->PNG,
 "width" => 512,
 "height" => -1
};

 { "outputFormat": {
 "type": "PNG",
 "width": 512,
 "height": -1
}}

 -C config.json

 With the following config.json:

 { "outputFormat": {
 "type": "PNG",
 "width": 512,
 "height": -1
}}

 The later two parameters set the width and height of the resulting images in pixels. If either of these is set to a value of less than 1
 it is computed from the other value and the aspect ratio of the page.

 for the media feature -ro-output-format, which allows setting
 styles specific for PDF or image output.

 Selecting a page

 All image output formats, except for the TIFF formats, create an image of a single page. By default, this is the first page. A different page can be selected
 using the configuration property pageOrder, e.g.:

 config.setPageOrder("5");

 config.PageOrder = "5";

 $config["pageOrder"] = "5";

 config['pageOrder'] = "5"

 config['pageOrder'] = "5"

 config.pageOrder = "5";

 config.pageOrder = "5";

 $config["pageOrder"] = "5";

 { "pageOrder": "5" }

 --pageOrder "5"

 Converting a Document Into Multiple Images

 To convert a document into multiple images, you have to set the multiImage parameter of your OutputFormat
 to true e.g. like this:

 config.setOutputFormat(new OutputFormat()
 .setType(OutputType.PNG)
 .setWidth(512)
 .setHeight(-1)
 .setMultiImage(true));

 config.OutputFormat = new OutputFormat {
 Type = OutputType.PNG,
 Width = 512,
 Height = -1,
 MultiImage = true
};

 $config["outputFormat"] = array(
 "type" => OutputType::PNG,
 "width" => 512,
 "height" => -1,
 "multiImage" => true
);

 config['outputFormat'] = {
 'type': PDFreactor.OutputType.PNG,
 'width': 512,
 'height': -1,
 'multiImage': True
}

 config['outputFormat'] = {
 type: PDFreactor::OutputType::PNG,
 width: 512,
 height: -1,
 multiImage: true
}

 config.outputFormat = {
 type: PDFreactor.OutputType.PNG,
 width: 512,
 height: -1,
 multiImage: true
};

 config.outputFormat = {
 type: PDFreactor.OutputType.PNG,
 width: 512,
 height: -1,
 multiImage: true
};

 $config["outputFormat"] = {
 "type" => PDFreactor::OutputType->PNG,
 "width" => 512,
 "height" => -1,
 "multiImage" => true
};

 { "outputFormat": {
 "type": "PNG",
 "width": 512,
 "height": -1,
 "multiImage": true
}}

 -C config.json

 With the following config.json:

 { "outputFormat": {
 "type": "PNG",
 "width": 512,
 "height": -1,
 "multiImage": true
}}

 The documentArray property of the Result object then returns an array of byte arrays, each
 containing an image representing one page of the document.

 Continuous Output

 The configuration property continuousOutput sets PDFreactor to continuous mode. In this mode each document is
 converted into one image. Also screen styles will be used and print styles will be ignored, resulting in a very browser-like look for the output image.

 config.setContinuousOutput(new ContinuousOutput()
 .setWidth(1024)
 .setHeight(768));

 config.ContinuousOutput = new ContinuousOutput {
 Width = 1024,
 Height = 768
};

 $config["continuousOutput"] = array(
 "width" => 1024,
 "height" => 768
);

 config['continuousOutput'] = {
 'width': 1024,
 'height': 768
}

 config['continuousOutput'] = {
 width: 1024,
 height: 768
}

 config.continuousOutput = {
 width: 1024,
 height: 768
};

 config.continuousOutput = {
 width: 1024,
 height: 768
};

 $config["continuousOutput"] = {
 "width" => 1024,
 "height" => 768
};

 { "continuousOutput": {
 "width": 1024,
 "height": 768
}}

 -C config.json

 With the following config.json:

 { "continuousOutput": {
 "width": 1024,
 "height": 768
}}

 The first parameter sets the width of the layout. This has the same effect as the width of a browser window. This only changes the layout. The result will still
 be scaled to the width specified by outputFormat

 The second parameter sets the height. This has the same effect as the height of a browser window, i.e. it will cut off the image or increase its height. Values
 of less than 1 cause the full height of the laid out document to be used.

 Grayscale Image

 PDFreactor can optionally output images that are entirely grayscale, i.e. that are composed exclusively of shades of gray and don't contain any other color.
 Such an output can be achieved using the forceGrayscaleImage configuration property like this:

 config.setForceGrayscaleImage(true);

 config.ForceGrayscaleImage = true;

 $config["forceGrayscaleImage"] = true;

 config['forceGrayscaleImage'] = True

 config['forceGrayscaleImage'] = true

 config.forceGrayscaleImage = true;

 config.forceGrayscaleImage = true;

 $config["forceGrayscaleImage"] = true;

 { "forceGrayscaleImage": true }

 --forceGrayscaleImage

 Grayscale output cannot be combined with transparency.

 Layout Documents

 This chapter provides information on how to lay out documents, while focusing on the differences of the paginated layout of PDFreactor,
 in contrast to the continuous layout of browsers.

 The document layout mostly depends on CSS but there are PDFreactor configuration properties and JavaScript functionality that
 may also be of use to achieve the desired results. While the common CSS properties known from browsers are supported as well,
 they are not covered in this chapter. Therefore an understanding of basic CSS is required.

 Pagination

 PDFreactor renders HTML and XML documents on pages. The rules to achieve that are provided by CSS.

 The document content is laid out page by page, whenever there is no more space left on a page, PDFreactor automatically breaks text
 and boxes to the next.

 Basic page styles are provided for HTML. Page styles for XML documents need to be created based on the documents language.

 Layout at Breaks

 Boxes around or next to breaks are subject to minor adjustments depending on the situation:

 Between Blocks

 The top margin of the first block on a page or column is ignored, except for the first page or column and for breaks forced via CSS. This difference can be
 eliminated by setting the proprietary property to always or none to ensure this adjustment is performed in all or no cases, respectively.

 A non-proprietary alternative, that also affects the layout of documents in browsers (especially relevant for multi-column) is to explicitly set specific
 top margins to 0.

 h1 {
 break-before: page;
 margin-top: 0;
}

div.multiColumn > *:first-child {
 margin-top: 0;
}

 The bottom margin of the last block on a page or column is always ignored.

 Inside Blocks

 When a break occurs inside a block (e.g. between two lines of text in a paragraph) the block is split into two parts. There is no border, margin or padding
 at the bottom of the first part or the top of the second one. Setting the property to clone forces the inclusion of these borders and paddings. This does not
 affect the margins.

 Images

 By default no breaks can occur inside images and other replaced elements.
 In cases when this is required the proprietary property
 can be set to the values
 auto or avoid to explicitly allow breaks inside block images.
 To avoid too small parts of images to be split-off at the beginning or end the
 and properties,
 multiplied by the computed , are taken into account.

 Page Selectors

 To create an individual page layout pages need to be selected with CSS. In principle it works the same way as selecting an element, but the selector is
 different.

 To select all pages of the document, the @page rule is used instead of the usual element selector.

 @page {
 margin: 1in;
}

 :first, :left, :right and other page specific pseudo-classes make it possible to style specific pages, like the first ones, e.g.
 for cover pages or subsets, like left pages.

 @page {
 margin: 0.5in;
}
@page:left {
 margin-right: 0.75in;
}
@page:right {
 margin-left: 0.75in;
}

 Which pages are left or right can be specified via the @-ro-preferences
 property

 Nth Page

 It is possible to select any page by using the prefixed CSS3 pseudo-class :-ro-nth(). This pseudo-class takes a function of
 the form An+B, similar to the pseudo-class :nth-child().

 A single page can be selected (e.g. :-ro-nth(3) selects the third page) or the function can be used to select multiple pages. For
 example, :-ro-nth(2n) selects every second page (i.e. even pages), while :-ro-nth(2n+1) selects
 the first and every other page (odd pages).

 Note that the selected page number is independent of the page counter, which is used to display page numbers and which can be manipulated.

 This pseudo-class can also be used in combination with page names. For more information see .

 Last Page

 As the counterpart to :first, there is the proprietary selector :-ro-last. It allows to select the
 last page of the document.

 Please note that as the content of the last page is only known after its content has been computed, there can be situations where the last page is empty.
 This can happen if the styles that are applied to the last page influence the layout of the page content, e.g. changing the page margins.

 Page Size & Orientation

 The size and orientation of a page can be set with the property. PDFreactor supports many different page sizes, see Appendix Supported
 Page Size Formats.

 @page {
 size: letter portrait;
}

 To set a page to landscape orientation, "portrait" is replaced by "landscape":

 @page {
 size: letter landscape;
}

 Instead of setting fixed page formats with a specified orientation it is also possible to set two length values. These then define page size and orientation.

 @page {
 size: 4.25in 6.75in;
}

 Named Pages

 With named pages an element is able to create and appear on a special page that has a name. This name can be used as part of a page selector to attach
 additional style properties to all pages of that name.

 To create a named page, an element receives the property with a page name as
 identifier.

 All HTML <table> elements have to appear on pages with the name pageName.

 table {
 page: pageName;
}

 A page break will be inserted before an element that has the page property set. Another page break will be inserted for the next
 element that defines a different page name (or none) to ensure the Named Page only contains elements that specify its name.

 To attach styles to a named page, the page name is added to the @page rule. The page name is not a pseudo-class like :first for example. There is a space between @page and the page name, not a colon.

 @page pageName {
 size: letter landscape;
}

 Page Groups

 When setting a page name, a page group of this name is created automatically. Compared to named pages, page groups are more flexible and can be used
 to select a certain page, e.g. the first page with a name instead of all pages with that name.

 While each page can have only one name, it can belong to multiple page groups, thus allowing an author to nest special pages. This means that if an element
 sets a page name to 'A', that page belongs to a page group of the same name, but can also belong to a group named 'B', if that group was defined by a parent element.

 The following sample applies page orientation and page background color to the same page, by using two page groups.

 HTML:

 <section>
 <table class="landscape"> ... </table>
</section>

 CSS:

 section {
 page: outerGroup;
}
.landscape {
 page: innerGroup;
}
/* Make all pages named 'outerGroup' lightblue */
@page :-ro-nth(n of outerGroup) {
 background-color: lightblue;
}
/* Make all pages named 'innerGoup' landscape */
@page :-ro-nth(n of innerGroup) {
 size: A4 landscape;
}

 In contrast to named pages, it is possible to create a new group even if the page name did not change. To do so, two adjacent elements,
 both defining the same page name, have to be divided by a forced page break.

 Another advantage of page groups, is the possibility to select certain pages belonging to a group name. This is especially useful, if the first page of a group
 should have different styles. To select the nth-page of a group, the -ro-nth(An+B of pageName) pseudo class is used:

 Select the first page of each page group with the name pageName.

 @page :-ro-nth(1 of pageName) {
 background-color: lightgrey;
}

 For more information on the syntax of the -ro-nth() pseudo class, please see .

 Breaking Text

 Text is broken whenever there is not enough space left, e.g. inside the line or on the page.

 Automatic Hyphenation

 Automatic Hyphenation allows breaking words in a way appropriate for the language of the word.

 To use Automatic Hyphenation two requirements must be met:

 	
 The text to hyphenate requires a language set in the document.

	

 The language set for the hyphenated text is supported by PDFreactor (see Appendix for more information)

 The lang attribute in HTML or the xml:lang attribute in XML allow defining a language for the document
 and on individual elements, in case they deviate from the document language.

 <html lang="en">
 ...
</html>

 Hyphenation is enabled or disabled via CSS with the property:

 Hyphenation enabled for an entire document except for paragraphs of the noHyphenation class.

 html {
 hyphens: auto;
}
p.noHyphenation {
 hyphens: none;
}

 In addition it is possible to specify the number of minimum letters before or after which text can be broken within a word. This is done with the and properties.

 Widows & Orphans

 If the last line of a paragraph is also the first line of a page it is called a widow.

 If the first line of a paragraph is also the last line of a page it is called an orphan.

 By default, PDFreactor avoids widows and orphans by adding a page break before the paragraph. This behavior can be changed with
 the CSS properties and .

 p {
 orphans: 2;
 widows: 2;
}

 Changing the value to 1 will allow widows and orphans. Changing it to higher integer values will prevent even multiple line widows and orphans. (e.g.: orphans: 5 means that if the first 4 lines of a paragraph are the last 4 lines of a page these lines are considered an orphan.)

 Customizing Line Breaks

 By default, the rules for breaking words are defined by the Unicode StandardSee Unicode Standard Annex #14 - Unicode Line Breaking Algorithm -
 https://www.unicode.org/reports/tr14/. In certain situations
 however, you may want to define specific break opportunities and forbid others. While this can be done using
 white-space and soft-hyphens, PDFreactor provides a more convenient
 way for general rules. The proprietary property -ro-line-break-opportunity allows to
 precisely define between which characters a break is allowed or forbidden.

 Specifying this is done via Regular Expression (Regex), excluding lookaheads or lookbehinds. Though the syntax may look confusing to those that
 are unfamiliar with Regex, it allows to define any possible break opportunity. The property value is divided in up to three parts:

 	

 normal: This optional identifier specifies that the default rules still apply. Thus the existing rules are only extended
 instead of being completely overridden.

	

 <whitelist>: These regex expression describe where break opportunities should be added.

	

 <blacklist>: The blacklist is separated with a slash and describes where break opportunities should be removed. The blacklist is stronger
 than the whitelist and overrides it in the case of a conflict.

 Both, whitelist and blacklist, describe the character matching using one or two strings. The first string describes the content that must come before,
 the second what must come after the break opportunity. The second string can be omitted, while the first string can be an empty string if it is not needed.
 In regex terms, the first string is a lookbehind, the second is a lookahead, hence the slightly reduced syntax.

 As the strings are specified in CSS, each backslash must be escaped. For example an escaped opening parenthesis would require two backslashes.
 One to escape the parenthesis for regex and one to escape the backslash for CSS: "\\("

 A common use case of this property is when trying to break a file path or other technical strings where normal breaking rules are not applied.

 Examples	Property Value	Effect
	normal / "[/-]"	Prevent breaks after a slash or a minus.
	normal "\\." "\\w"	Allow a break after a dot followed by a word character.
	normal "\\w" "\\(" / "" "\\(\\)"	Allow a break between a word character and a left parenthesis, except if a left and a right parenthesis follows.
	normal "\\\\" / "" "\\\""	Allow a break after a backslash, except if it is followed by a quote.
	"\\w" "(\\d){3,}"	Only allow break between a word character and a number, if at least 3 digits follow.

 Long and complex rules (especially those that include wildcards) can impact the performance
 depending on the length of the paragraphs, so it is best practice to apply the style only
 to the elements that may actually need them.

 Generated Content

 Generated content does not originate from the document. It is created by CSS during the rendering process and appears in the rendered result as if it was part of
 the document.

 The pseudo-elements ::before and ::after are used to generate content before or after an element. The
 actual content is created with the property.

 Generated Text

 To create generated text, set a String as value of the content property.

 Generated Text on an HTML <div> element.

 HTML:

 <div>This is a note.</div>

 CSS:

 div::before {
 /* Adds the text "Note:" at the start of the element. */
 content: "Note:";

 padding-right: 0.1in;
 font-weight: bold;
}
div {
 border: 1px solid black;
 background-color: palegoldenrod;
 padding: 0.1in;
}

 As a result, the <div> would look like this:

 This is a note.

 Sometimes it is necessary to add an explicit line break to generated text. To create such a line break, a "\A " (an escaped line break character followed by a space) needs to be added to
 the String and the property needs to be set to either pre,
 pre-wrap or pre-line.

 div::before {
 content: "RealObjects\A PDFreactor";
 white-space: pre;
}

 The result would look like this:

 Generated Images

 A generated image can be created with the image's URL set as value of the content property.

 h1::before {
 content: url("https://mydomain/pictures/image.svg");
}

 Counters

 Counters can be used to count elements or pages and then add the value of the Counter to generated text.

 A Counter needs to be defined either with the or the property. Its value is read with the counter()
 function as value of the content property.

 A common use-case for Counters are numbered headings. The chapter heading of a document is intended to display a number in front of its text that increases
 with each chapter.

 A chapter heading for HTML <h1> elements using Counters and Generated Text.

 h1 {
 /* increases the counter "heading1" by 1 on each <h1> element */
 counter-increment: heading1 1;
}
h1::before {
 /* Adds the current value of "heading1" before the <h1> element's
 text as decimal number */
 content: counter(heading1, decimal)
}

 Subchapter headings, work the same way, with a simple addition. The number of each subchapter is intended to be reset whenever a new chapter begins. To restart
 numbering, the counter-reset property is used.

 h1 {
 /* resets the value of counter "heading2" to 0 on every <h1> element */
 counter-reset: heading2 0;
}
h2 {
 counter-increment: heading2 1;
}

h2::before {
 /* Shows the current value of "heading1" and "heading2", separated by a
 generated text ".", the value of "heading2" is shown as lower-case
 letter */
 content: counter(heading1, decimal) "." counter(heading2, lower-alpha)
}

 To define custom counter representations use the @counter-style rule. It is structured like this:

 @counter-style <counter-style-name> {

 system: <counter-system>;
 symbols: <counter-symbols>;
 additive-symbols: <additive-symbols>;
 negative: <negative-symbol>;
 prefix: <prefix>;
 suffix: <suffix>;
 range: <range>;
 pad: <padding>;
 fallback: <counter-style-name>;

}

 To learn more on how to use the @counter-style rule, see the MDN Documentation.

 Page Header & Footer

 Header, Footer & Page Side Boxes

 It is possible to add Generated Content to a page within the page margin. The page margin is the space between the document content and the edges of a sheet. It
 is defined on a page using and the property.

 Each page provides sixteen Page Margin Boxes that can display Generated Content much like a pseudo-element. To add Generated Content to a page, add a Page
 Margin Box declaration to an existing @page rule and set the Generated Content to the property as usual.

 [image: Page margin boxes]
 Page Margin Boxes

 A Page Margin Box declaration consists of an "@" character followed by the name of the Page Margin Box.

 @top-left {
 content: "RealObjects PDFreactor(R)";
}
@top-right {
 content: "copyright 2024 by RealObjects";
}

 Running Elements

 Running Elements are elements inside the document that are not rendered inside the document content but inside Page Margin Boxes.

 They are useful whenever the content of a Page Margin Box needs to be more complex than Generated Content (e.g. a table) or parts of it need to be styled
 individually.

 In case the document does not provide elements to use Running Elements and Generated Content does not suffice, it is possible to add elements to the
 document with JavaScript to be able to use Running Elements.

 To create a Running Element, an element needs to be positioned as "running", using the running() function with an identifier for
 the element as argument. The function is set as value of the property. This
 removes the element from the document content.

 To display a Running Element inside a Page Margin Box, set the element() function as value of the content
 property. The argument of the function is the same identifier used to in the running() function of the Running Element.

 An HTML <footer> element at the start of the document used as page footer in all pages.

 HTML:

 <body>
 <footer>...</footer>
 ...
</body>

 CSS:

 footer {
 position: running(footerIdentifier);
}
@page {
 @bottom-center {
 content: element(footerIdentifier);
 }
}

 The <footer> needs to be at the beginning of the HTML document to guarantee, that it will appear on every page of the
 document.

 The reason for that is, that running elements stay anchored to the location they would appear in if they were not Running Elements.

 The original position of the running element inside the document plays a key role when designing a document, it provides document designers with additional
 options.

 First of all it is possible to have running elements of the same name, which makes it possible to change the content of a Page Margin Box over the course of
 the document.

 Two Running Elements at the start of the document with the same name. The first appears on page one, the second on every page
 thereafter because it is the latest Running Element of the name.

 HTML:

 <body>
 <header id="titlePageHeader">...</header>
 <header id="pageHeader">...</header>
 <!-- first page content -->
 ...
 <!-- second page content -->
 ...
</body>

 CSS:

 #titlePageHeader, #pageHeader {
 position: running(headerIdentifier);
}
@page {
 @top-center {
 content: element(headerIdentifier);
 }
}

 Second of all it is possible to have running elements appear for the first time later in the document than on the first page.

 An HTML <footer> element at the end of the document is used as Running Element. The page footer displays it in the last page
 only, as it is not available earlier.

 HTML:

 <body>
 ...
 <footer>...</footer>
</body>

 CSS:

 footer {
 position: running(footerIdentifier);
}
@page {
 @bottom-center {
 content: element(footerIdentifier);
 }
}

 Notice how the style does not differ from the one used in the first example of this chapter. This shows how much influence the position of a Running Element
 is inside the document has.

 It is possible that more than one Running Element of the same name would anchor on the same page. Sometimes, it may not be the first Running Element on a page
 that should be used for that page. For that case it is possible to add one of these identifiers as second argument to the element()
 function:

 	

 start

 	
 Retrieves the latest Running Element of the name from previous pages.

	
 If there is none, nothing is displayed.

	

 first

 	
 Retrieves the first Running Element of the name on the page.

	

 If there is none, it falls back to the behavior of start.

	
 This is the default behavior if no argument is given.

	

 last

 	
 Retrieves the last Running Element of the name on the page.

	

 If there is none, it falls back to the behavior of start.

	
 This keyword is useful in case a Running Element is displayed as footer throughout the document but the last page should receive a different
 Running Element, which is placed at the end of the document.

	

 first-except

 	
 If a Running Element of the name is on the page, nothing is displayed.

	

 If there is none, it falls back to the behavior of start.

	
 This keyword is useful on chapter title pages where the chapter name is already displayed.

 If a Running Element or its contents define Generated Content that contains (or) their value will be the same as if they were defined as content of the Page Margin
 Box the Running Element is used in.

 Running Documents

 In case does not suffice and are not an option, it is possible to use Running Documents inside Page Margin Boxes.

 A Running Document is a String containing an HTML document or document fragment or a URL that references a document as argument of the xhtml()
 function.

 The xhtml() function is a proprietary extension of CSS and will only work for RealObjects products.

 /* document fragment */
content: xhtml("<table>…</table>");
/* complete document */
content: xhtml("<html><head>...</head><body>...</body></html>");
/* external document */
content: xhtml(url("header.html"));

 The document is loaded independently inside the Page Margin Box but styles from the document are passed down to it. This can be an advantage as the same style
 is used throughout all documents. In some cases though this behavior is not desired as this style may break the layout of the document inside the Page Margin
 Box. To prevent passing down style the –ro-passdown-styles property
 is used.

 When using the xhtml() function in non-HTML5 documents (e.g. XHTML inside the head in a <style> element) the entire CSS
 needs to be wrapped in an XML comment.

 <!--
@page {
 @top-center {
 content: xhtml("<table>...</table>");
 }
}
-->

 Running Documents have access to and from their embedding document and may display them, but cannot influence them.

 Counters and Named Strings created inside Running Documents have no effect outside of the Running Document.

 Generated Content for Pages

 Additional features for are available within Page Margin Boxes.

 Page Counters

 To add page numbers to documents, Page Counters are used. Page Counters work like regular counters,
 but are defined on pages and accessed in page margin boxes.

 The default Page Counter is named "page" and automatically defined in HTML documents.

 @page {
 @bottom-right {
 content: counter(page);
 }
}

 For XML documents you can define the Page Counter as follows.

 @page:first {
 counter-reset: page applicationValue("com/realobjects/pdfreactor/start-page-number");
}

 Additionally there is the "pages" counter, which is always defined as the total number of pages of the laid out document.

 content: "Page " counter(page) " of " counter(pages)

 You can add an offset to the pages counter value (e.g. -1 to ignore the cover page) via the @-ro-preferences property .

 Named Strings

 Named Strings allow to store the text of an element and its as String for use in Page Margin Boxes.

 A Named String is defined very similar to a Counter and is used in a similar way. To create a
 Named String the property is used, which requires an identifier and a
 definition of the contents of the String. To read a Named String the string() function is used as value of the content property.

 A Named String "headingString" created from the heading's text with the function content() and
 read with the string() function from the page header:

 h1 {
 string-set: headingString content(text);
}
@page {
 @top-left {
 content: string(headingString);
 }
}

 The content of a named String is very flexible and can take a combination of Strings, counter() functions and Named String
 keywords.

 /* Creates a Named String in the form of "Chapter [chapter number]: [chapter title]". */
h1 {
 string-set: headingString "Chapter " content(before) ": " content()
}
/* Retrieves the first letter of an address element, useful as part of a page header
 for a sorted list of addresses */
address {
 string-set: addressEntry content(first-letter);
}

 When a Named String is set multiple times on the current page, the optional 2nd parameter
 of the function, defaulting to first, specifies which one to use:

 	first: the first one

	last: the last one

	first-except: none, use empty string

	start: the first one, if it is at the beginning of the page

 If there is none on the current page (or, in case of start, none at its beginning),
 the last one before is used. If there is none, either, the default is the empty string.

 Cross-references

 A Cross-reference is a piece of text that references another location in the document in order to establish a thematic relationship to that location.

 Although it is perfectly possible to add such references by hand, this approach is prone to error when creating and modifying the document. After a change
 the numbering and page numbers might not match the numbering from when the cross-reference was first defined. The same could happen to the reference text if it
 includes the chapter title.

 To always keep the reference up-to-date with the referenced location, CSS provides the target-counter() and target-text() functions to retrieve the exact numbering, title or page number of the referenced location.

 PDFreactor only resolves internal links referring to an anchor in the same input document, see the chapter for more information.

 Counter Cross-references

 The target-counter() function is used inside the content property the same way a counter() function would be used. It receives a URL to the referenced location and the name of the counter as identifier. It may
 receive an optional third argument to define the output style of the counter, just like the counter() function.

 Cross-references created from an HTML hyperlink to a chapter heading with a numbering.
 The Cross-reference is declared with generated text and target-counter() functions to retrieve the page and chapter numbers.

 HTML:

 ...
<p>For more information see.
...
<h1 id="chapter">Cross-references</h1>
...

 CSS:

 @page {
 @bottom-right {
 content: counter(page);
 }
}
h1 {
 counter-increment: chapterCounter;
}
h1::before {
 content: counter(chapterCounter, upper-roman);
}
a[href]::after {
 content: "Chapter " target-counter(attr(href url), chapterCounter, upper-roman)
 " on page " target-counter(attr(href url), page);
}

 Assuming the referenced chapter would render on page 5 as the third chapter, the cross-reference would read:

 For more information, see Chapter III on page 5.

 Text Cross-references

 The target-text() function is used inside the content property in a
 similar way as the target-counter() function is used. It receives a URL to the referenced location and takes one of these four
 keywords to specify the text to retrieve:

 	

 content - Retrieves the textual content of the element. This is the default keyword if no keyword is present.

	

 first-letter - Retrieves the first letter of the element's textual content.

	

 before - Retrieves the before of an element.

	

 after - Retrieves the after of an element.

 The following example shows a cross-reference that references a heading and shows its before Generated Content and text:

 a[href]{
 content: target-text(attr(href url), before) " "
 target-text(attr(href url), content);
}

 target-text() makes it easy to retrieve the before Generated Content of an element, which may include its numbering. This
 method does not require any knowledge about how this before Generated Content is created but it also does not allow to rebuild it into something
 different.

 If the before Generated Content of an element is "2.1" and the page header should be "Chapter 2, Section 1" the target-counter() function provides the necessary means to retrieve all
 the individually.

 Footnotes

 A footnote is a text note placed on the bottom of a page, a column or a region. It references a specific part of the main content of the document, giving
 further explanations or information about a citation. A footnote is marked by a defined symbol both in the main content of the page and in the footnote
 area at the bottom, to show which parts belong together.

 For content that is required to have a footnote, the following style can be applied:

 float: footnote;

 The text content of the element that the style applied to, will appear in the footnote area at the bottom of the page. Content in the footnote area of pages
 can be styled via CSS using the footnote at-rule.

 HTML (snippet)

 <p>This is a CSSCascading Style Sheet generated footnote.</p>

 CSS

 .footnote {
 float: footnote;
}
@page {
 @footnote {
 border-top: solid black 1px;
 }
}

 The pseudo-element ::-ro-footnote-area allows to select the footnote area of multi-column or region elements for styling.

.multiColumn {
 columns: 2;
}
.multiColumn::-ro-footnote-area {
 border-top: solid black 1px;
}

 By defining a footnote, a footnote call is left behind in the main content. Its content and style can be influenced by the footnote-call
 pseudo-element.

 For every footnote element, there is also a footnote-marker pseudo-element added. Usually this contains the same number or symbol
 as the footnote-call it belongs to.

 .footnote::footnote-call {
 content: counter(footnote, decimal);
}
.footnote::footnote-marker {
 content: counter(footnote, decimal);
}

 By default, the footnote counter is available and is automatically incremented for every element with the style:

 float: footnote

 By default, this counter numbers the footnotes sequentially for the entire document. To number footnotes on a per-page basis, the counter has to be reset on every
 page, using the following style:
 @page {
 counter-reset: footnote;
}

 PDFreactor currently does not support nested footnotes.

 Normally, footnotes area laid out as block elements, which means that they are stacked on top of each other. When having several short footnotes, it
 can make sense to place them next to each other, as if they were inline elements. This can be achieved by using the
 property, which can either be set to block or inline:

 .foonote {
 float: footnote;
 footnote-display: inline;
}

 Continuation Markers

 When content is fragmented it can be helpful to show a hint that it is continued on the next page or
 a fragment is a continuation from a previous one. PDFreactor allows to specify such continuation markers.

 The markers are generated content and as such they are addressed with proprietary pseudo-elements. The pseudo-element ::-ro-before-break creates markers
 at the bottom or before a break (e.g. "Continued on next page"), while ::-ro-after-break creates markers at the top or after the break.
 These continuation markers are only created if there is a next or previous fragment, i.e. the respective element is split.

 In the current implementation, the continuation markers can only be applied on block elements (display: block). This means that
 when intending to apply them on a table, they must be used on a container element that wraps the table:

 HTML:

 <div class="table">
 <table> ... </table>
</div>

 CSS:

 div.table::-ro-before-break {
 content: "Continued on page " -ro-counter-offset(page, 1);
 text-align: center;
 font-weight: bold;
}
div.table::-ro-after-break {
 content: "Continuation from page " -ro-counter-offset(page, -1);
 text-align: center;
 font-weight: bold;
}

 In order to hint to the next page number, the proprietary function -ro-counter-offset is
 used in this sample to modify the current page number by one.

 Transforms

 PDFreactor is capable of applying two dimensional transformations on elements with the property, which makes moving, rotating and scaling document content possible.

 Transforms do not have an impact on the document layout, e.g. content with scaled up size will not push other content away to prevent overlapping.

 Reduce Table Width with Rotated Table Headers

 is able to reduce the width of table headers with transforms.

 The rotateTableHeaders() function transforms and rotates a table header, in order to reduce its width. If there is no table
 header, the first line is converted to one.

 This function takes two parameters:

 	

 table: The HTML node of the table

	

 params: An object of optional parameters

 Options	Key	Description	Default
	angle	The angle in degrees at which the header will be rotated. Should be between -90 and 90	45
	width	The width that the header cells should have after the transformation, e.g. "20pt".
 	"auto"
	firstCol	Whether to prevent the first column from being transformed.	false
	lastCol	Whether to prevent the last column from being transformed.	false
	footer	Whether to create a <tfoot> element from the last row in the table. Has no
 effect if the table already contains a <tfoot>.
 	false

 Multi-column Layout

 The content of a document can be arranged in columns with elements like images or titles spanning through all columns if desired. Elements are laid out in a way
 similar to pages, text and boxes will break whenever no space is left in a column.

 Multi-column layout is often used in print products like newspapers or magazines, it is intended to reduce the line width to make text easier to read.

 The following box shows how text flows in a three-column layout. The paragraphs are numbered to better visualize the effect of multi-column layout.

 [1] Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla in libero turpis. Sed sed dolor diam, eu dapibus quam. Quisque
 ut nulla purus, iaculis sollicitudin erat. Nullam dictum suscipit porttitor.

 [2] Aliquam aliquam elementum elementum. Donec vel odio nec diam ullamcorper ultricies vel sit amet elit. Cras non aliquet lectus.

 [3] Donec sollicitudin lorem placerat est condimentum rutrum. Fusce tempor cursus rutrum. Duis mattis mattis sapien. Phasellus
 tempus iaculis tellus sed vestibulum.

 [4] Etiam faucibus consectetur augue, sit amet interdum elit dapibus at.

 To create a multi-column layout inside an element add either the property or or both. By adding them the element becomes a multi-column element.

 The column-count property defines the number of columns inside the element. Any number greater than 1 will create a multi-column
 layout. The column-count property is especially useful if the actual width of the columns is not as important as the number of columns.

 Alternatively, the column-width property can be used to specify a minimum width for the columns. Based on this width the final column count is computed,
 thus the resulting column widths are likely larger than the specified value.

 /* define two columns */
div.twoColumns { column-count: 2; }

/* define columns with a width of 2in */
div.twoInchColumns { column-width: 2in; }

 By default, PDFreactor aims to balance the content of columns so that the content of all individual columns is equally long, if
 possible. This has the effect of keeping the height of each column at the possible minimum, which automatically determines the height of the multi-column element as
 a whole if it wasn't defined by a height property or attribute.

 This behavior can also be modified to fill columns sequentially. In this case, the columns are filled until no more space is available in one column and the rest
 of the content needs to be moved to the next column. With this behavior a multi-column element whose height is not restricted will take up all the remaining space
 inside the multi-column-element, up to the remaining space available on the page until it breaks to another column.

 The filling behavior can be controlled with the property:

 /* sequential filling behavior */
div.sequentialFill { column-fill: auto; }

/* balanced filling behavior */
div.balancedFill { column-fill: balance; }

 A defined height on the multi-column element will be used for an element, regardless of the filling behavior. If there is less content than there is space inside
 the multi-column element a balanced filling behavior will create shorter columns, leaving space at the bottom of the multi-column element. Sequential filling
 behavior may not have enough content to fill all the columns, thus columns may be left empty. If there is more content than there is space inside the
 multi-column element, the multi-column element will create a page break and continue on the next page, at the first column.

 Usually elements inside a multi-column element are laid out one after another in columns as defined by the filling behavior. Some elements, however,
 may require a certain behavior when inside columns.

 There are elements that are required to span all columns inside the multi-column element instead of only one. Headings, pictures or tables are the most common
 examples. To have an element span all columns the property is used.

 /* a heading that spans all columns */
h1 { column-span: all; }

/* a table in a single column */
table { column-span: none; }

 To add some visual appeal to the multi-column element borders, backgrounds and padding can be used. Beside these standard styles multi-column elements can also
 receive additional styles for the space between columns.

 To visually separate columns it is possible to define the gap width. Gaps can be considered as padding between columns. To define the gap width for a multi-column
 element the column-gap property is used.

 /* a gap of 0.25in */
div.multiColumn { column-gap: 0.25in; }

 In addition to the gap a rule can be added between the columns as additional visual aid for separating columns. To define rules for a multi-column element the
 property either the shorthand or the individual properties , or can be used.

 /* a solid black rule with 0.1in width*/
div.multiColumn {
 column-rule-width: 0.1in;
 column-rule-style: solid;
 column-rule-color: black;
}

/* the same definition as shorthand */
div.multiColumn { column-rule: 0.1in solid black; }

 A Multi-column layout with justified text looks best when the text is laid out with
 enabled.

 Line Grids and Snapping

 With CSS it is possible to align lines of text to invisible grids in the document. This greatly improves readability of duplex printing or for documents with
 multi-column layouts. Lines remain at the same position on every page, thus keeping a vertical rhythm which is very beneficial to the reading experience.

 The below images show how snapping to the line grid works and how it improves readability in a text with two columns (the line grid is visualized by the dotted
 lines).

 [image: Lines not snapped]
 Lines not snapped

 [image: Lines snapped]
 Lines snapped to grid

 Snapping to grid can be enabled by using the CSS property . In addition to
 snapping to the baseline of the grid, it is also possible snap line boxes to the center of two of the grid's lines. The latter may be beneficial for text that
 contains small and large font sizes because the space in the grid is used more efficiently.

 /* snapping to baseline */
p {
 -ro-line-snap: baseline;
}

/* snapping between grid lines */
p {
 -ro-line-snap: contain;
}

 Line grids are created automatically. Normally, one line grid is created for the root element on each page and is then used by all its block-level descendants. It
 is also possible to create a new line grid for a block using its own font and line height settings. This is very useful for multi-column containers as it might be
 undesirable for such a container to use its parent's grid. A new grid can be created with the following style declaration, using the CSS property :

 div {
 -ro-line-grid: create;
}

 When using Page Floats and line grids, make sure that top floated elements are also set to snap to the grid, otherwise they may
 push the text below them downwards, so that the lines are no longer aligned with the grid.

 Also avoid mixing different line grid settings with page floats, as on each page only the last page float that snaps to a grid can be taken into account, so
 using different line grids may also lead to misaligned text.

 Region Layout

 Regions are containers for document content similar to pages or columns, but they can be
 positioned individually. In contrast to automatically created pages and columns, regions are based on block elements from the document, which presents them with
 more styling options.

 Regions belong to a region chain, that connects them and tells how their contents flows from one to another. The content of a region chain is called the named
 flow and elements can be added to a named flow to be displayed in regions.

 [image: Regions]
 A named flow flows through a region chain.

 Adding Regions to Region Chains

 Most block elements can be defined as a region. They are not required to be of the same size nor are they required to be the same node name.

 To create a region from a block element, the property is used. It receives
 an identifier. A region chain contains all regions of the same identifier in document order. The identifier is also the name of the named flow these regions
 will display.

 A region element will not have its subtree rendered. It either displays content from a named flow or nothing.

 A chain of two regions defined for two HTML div elements with IDs "region1" and "region2".

 #region1, #region2 {
 -ro-flow-from: regionChainName;
}

 PDFreactor lays out content into regions and breaks text and boxes where no space is left. The number of
 regions inside a region chain is limited by the number of associated Region elements though and it is possible that the content of a named flow occupies more
 space than is available inside the regions of a region chain. In that case content from the named flow overflows the last region inside the region chain.

 A region does not influence the style of the content it contains. No style is inherited from a region into the displayed named flow and style that would
 influence the content of an element has no effect on a region's content.

 Adding Content to a Named Flow

 The –ro-flow-into property adds document content to a named flow. The
 content may consist of content from one or more elements. Content assigned to a named flow is not rendered at its position inside the document but inside one of
 the regions inside the region chain.

 The property receives an identifier which is the name of the named flow the content belongs to. An optional keyword defines what part of the styled element
 should be taken into the named flow:

 	

 element

 	
 Adds the entire element to the named flow.

	
 If no keyword is given, this is the default behavior.

	

 content

 	
 Adds the element's content to the named flow.

 Creation of a named flow for two HTML <article> elements while an HTML <section>
 element from one of the articles is moved to a different named flow.

 HTML:

 <article>...</article>
<article>
 ...
 <section id="info">...</section>
</article>

 CSS:

 article {
 -ro-flow-into: articleNamedFlowName;
}
section#info {
 -ro-flow-into: infoNamedFlowName;
}

 The content of a named flow may be rendered inside regions, but it still inherits style and computes its style the same way it would as if it did not
 appear inside a region.

 Region Generated Content

 A region element can have before and after just like any other element. This generated
 content is rendered above or below the region's content and is not moved to the next region due to lack of space. Instead the available space inside a region is
 reduced. If there is not enough space left, the region's content flows over.

 Controlling Breaks

 Although PDFreactor performs automatic breaks between boxes for pages,
 columns and regions, it
 is often necessary to add explicit breaks in certain situations or breaks should be avoided to keep content together where it belongs together. This chapter
 explains how both can be achieved.

 PDFreactor provides styles for HTML that influence the break behavior for certain elements like headings. Break
 Styles for XML documents need to be created based on the document language.

 Breaking Around Boxes

 To manipulate the break behavior before and after boxes, the break-before
 and break-after properties are used. They provide keywords to
 force or avoid page, column and region breaks.

 A manual page break before an HTML <h1> element, used to make a chapter start on top of a new page.

 h1 {
 break-before: page;
}

 A manual page break before an HTML <h1> element, that makes the chapter start on a right page.

 h1 {
 break-before: right;
}

 This style creates a page break before the h1 and moves it to the next page. In case this is a left page another page break is performed, to move it to a
 right page again.

 h1, h2, h3, h4, h5, h6 {
 break-after: avoid;
}

 PDFreactor also supports the CSS 2.1 properties page-break-before and page-break-after.
 They are resolved as shorthands for break-before and break-after.

 Avoid Breaking Inside Boxes

 To manipulate the break behavior inside a box, the property is used. It
 specifies whether breaking should be avoided inside the box or not.

 Avoid breaks inside an HTML <div> element.

 div {
 break-inside: avoid;
}

 PDFreactor also accepts the CSS 2.1 property page-break-inside and resolves it as shorthand
 for break-inside.

 Adaptive Page Breaks

 is able to automatically add page breaks depending on the amount of space left below an
 element with the help of the applyAdaptivePageBreaks() function.

 A possible use case is to prevent a new section from beginning at the bottom of a page.

 The function also prevents large whitespaces that occur when in situations where only a couple of sentences from a previous section are followed by a page
 break as the next section begins.

 The function takes two parameters:

 	

 selector: (optional) The CSS selector for the elements that may require a new page break. Default value: "h1, h2"

	

 threshold: (optional) If an element is below this percentage of the page height, a page break
 is inserted. Default value: 67

 Page Floats

 Page floats are an extension of regular floats, also called inline floats, as they float in inline direction, i.e. left and right.
 Page floats on the other hand allow to float up and down, to the top or the bottom of a fragmentation container (page, column or region).
 If there is not enough space left, the page float is moved to the next fragmentation container, e.g. to the top/bottom of the following page,
 while the rest of the content continues on the current page.

 The current implementation of page floats does come with some limitations:

 	

 The normal content does not flow to the sides of the page float. Basically, the page float area always consumes the
 complete width of the corresponding fragmentation container, even if a page float itself has a smaller width.

	

 The page float always flows in the current fragmentation container. For example, a page float originating in a
 multi-column, will always stay in a column and is not moved to the level of the page.

	

 The content of a page float cannot be fragmented, meaning that if it becomes larger than a page, it will overflow instead of
 being split to the next page.

 The CSS property float has been extended with the values -ro-top and -ro-bottom to enable page floats.
 To set the distance between two page floats of the same side or to the corresponding edge of the page, the new property
 -ro-float-offset can be used.

 With this sample, elements with the class pageFloatTop float to the top of their page with a gap of
 5 mm to the page margin areas at the top.

 CSS:

 .pageFloatTop {
 float: -ro-top;
 -ro-float-offset: 5mm;
}

 When inline floats (left or right floated) precede the page float, the inline float may overflow the page. The same may happen
 in wrapped column flex items. Basically, when blocks of content are next to each other, problems can arise when the page float
 does not originate from the first one. This is a known issue that will be addressed in a future version.

 Print Specific Page Properties

 PDFreactor provides additional means for professional printing that allow to specify oversized pages, a bleed area and marks for cutting sheets to the final page
 size and color proofing.

 PDF Page Boxes

 Page boxes are used to specify the page geometry, especially in professional printing. PDFreactor supports the TrimBox,
 MediaBox, BleedBox, CropBox and ArtBox.

 TrimBox

 The TrimBox defines the size of the final print result, the final page. It contains the page content.

 The size of the TrimBox is defined equivalent to the page size, as mentioned in chapter , using the property.

 The value of the size property also automatically specifies the TrimBox.

 size: A4 portrait;

 MediaBox

 In prepress, a printed document can contain more information than just the actual content in the TrimBox (e.g. bleed or).

 As this information does not belong to the print result and instead needs to be printed around it, a print sheet larger than the print result is needed.
 The MediaBox defines the size of the print sheet.

 Special oversize formats are used as print sheet in such cases. For DIN Deutsches Institut für Normung, in English: German Institute for Standardization, Germany's ISO member body.
 standard-based formats, the matching oversize formats to the A series are the DIN-RA and DIN-SRA formats. An overview of all supported page sizes can be
 found in the Appendix

 The property is used to specify the media size.

 The document should be printed in DIN-SRA4 and the MediaBox is set to this size

 -ro-media-size: SRA4;

 The MediaBox is the largest of all 5 page boxes and contains all others which can be smaller or equal than this box.

 BleedBox

 The BleedBox contains the TrimBox and is slightly larger. Content from the TrimBox may "bleed" into the BleedBox where it is still painted.

 This is necessary for content that should reach to the edge of the print result. It prevents having unprinted areas due to unprecise trimming of the
 printed sheet.

 The size of the BleedBox is defined as a width that adds to the TrimBox' size on all four sides. Common bleed values are 3-5 mm or 1/8 inch.

 Setting the bleed size can be achieved by using the property bleed.

 A bleed width of 3mm around the print result. The Bleed Box determines it's size from the TrimBox and this width.

 bleed: 3mm;

 CropBox

 The CropBox defines the complete area of the document that should be displayed on screen or printed out.

 The crop size can be defined using the property .

 The crop size can be set to a specific page size format (like setting the trim size) or to one of the page boxes. It is set to none by default.

 The CropBox is set to match the MediaBox.

 -ro-crop-size: media;

 ArtBox

 The ArtBox is used to define a specific area inside which the page's content is located.

 Using the property , the ArtBox can be set to a specific page size or
 one of the page boxes. It is set to none by default.

 When generating a PDF/A conformant file (see PDF/A conformance), the ArtBox must not to be defined, so
 the property must be set to none.

 Printer Marks

 Printer Marks are special pieces of information located outside of the actual print result. They are used to prove the correctness of the result in prepress
 printing and are placed outside the .

 Cutting out the print result of the print sheet is done inside the bleed area. Trim and bleed marks indicate where this area starts and ends. Both types of
 marks are displayed as hairlines in the corner of the print sheet.

 Registration marks show whether the printer's colors are aligned properly. They are printed as crosshair-shaped objects located on each side of the print
 sheet.

 Color bars show if the colors of the print result meet the expected result. They consist of a variety of colors that can be checked individually.

 [image: Printer marks]
 Printer Marks

 The property is used to add crop, bleed and cross marks. The property sets the width of the mark lines, sets their color.

 marks: crop -ro-bleed cross;
-ro-marks-width: 1pt;
-ro-marks-color: red;

 Setting one of the -ro-colorbar-* properties defines where a color bar is
 added to the document.

 -ro-colorbar-bottom-left: gradient-tint;
-ro-colorbar-bottom-right: progressive-color;

 Positioning Content Relative to Page Boxes

 Using the proprietary property

 allows content with
 ": absolute"
 to be positioned relative to any
 page box
 of its page.
 This is especially useful to place decorative content relative to the bleed box, thus
 making it exceed the trim box so bleed is properly utilized.

 @page {
 bleed: 3mm;
 -ro-media-size: SRA4 portrait;
 -ro-crop-size: media;
 marks: trim bleed registration;
 @top-right-corner {
 content: counter(page);
 vertical-align: top;
 text-align: right;
 padding: 1cm;
 position: absolute;
 top: 0;
 right: 0;
 width: 5cm;
 height: 5cm;
 background-image: radial-gradient(at 100% 0%, lightblue 0%, white 50%);
 -ro-position-origin: -ro-bleed-box; /* Position in the bleed box of the page */
 }
}

 Leaders

 Leaders are often used to draw a visual connection between an entry in a table of contents or similar structures, and a corresponding value.

 In CSS, drawing leaders is accomplished via the use of the leader() function. This function accepts the following values:

 	

 dotted

	

 solid

	

 space

	

 <string>

 A leader may be added using the content property, and can be combined freely with other generated content such as counters.

 a.toc_ah2::after {
 content: leader(dotted) " " target-counter(attr(href url), page);
}

 This may result in a display such as:

 [image: Leaders]

 Table of Contents

 A table of contents can be inserted into a document to generate a list of the chapters or other important sections in the document.

 This feature is usually used together with cross-references to add links to a table of contents. With the addition of counters, it can be complemented with the
 page numbers of the linked chapters.

 The createTableOfContents() function provided by allows to insert a
 table of contents that is generated from given elements.

 The table of contents requires certain styles to work properly. These styles are included in the awesomizr.css and should be added either to the document or by
 using the userStyleSheets configuration property of the PDFreactor API.

 The table of contents is inserted as an HTML div element with the class ro-toc. Inside this div can be two headings (document title and a heading for the table of contents with the class ro-toc-heading)
 and the div elements with links to the pages and a class depending on the level of the referenced element (ro-toc-heading1,
 ro-toc-heading2, ...)

 The level of a TOC entry is determined by the position of its selector in the elements array.

 Awesomizr.createTableOfContents({elements: ["h1", "h2", "h3"]});

 The function's optional parameter is an object with several options:

 Values of the option object	Key	Type	Description	Default
	insertiontarget	string	CSS selector string of the element where the table of contents should be inserted.	"body"
	insertiontype	string	Specifies where exactly the table of contents should be inserted:
 	

 "beforebegin": Before the element

	

 "afterbegin": As new first-child

	

 "beforeend": As new last-child

	

 "afterend": After the element

 	"afterbegin"
	elements	array	An array of the CSS selector strings of elements that should be added to the table of contents. Each TOC entry gets a class name
 based on the index of the corresponding selector in this array, e.g. by default the h2 entries have the class ro-toc-level-2.
 	["h1", "h2"]
	toctitle	string	The title of the table of contents. If an empty string is set, no title is inserted.	"Table of Contents"
	disabledocumenttitle	boolean	Whether the document title should NOT be inserted before the table of contents.	false
	text	function	By default, the text for the entries of the TOC is the text content of the element matching the specified selector. Alternatively,
 you can specify a function, the return value of which will be used as text for the respective entry. The element representing the entry is passed as an
 argument to the function. Returning false will skip the entry entirely and not include it in the TOC.
 	null

 Simple table of contents created with Awesomizr based on HTML <h2> elements.

 <link href="css/awesomizr.css" type="text/css" rel="stylesheet" />
<script type="text/javascript" src="awesomizr.js"></script>
...
<body onload="Awesomizr.createTableOfContents({elements:['h2']});">

 Awesomizr.createTableOfContents({
 elements: ['img'],
 text: function(elem) {
 // the entry text should be the image's alt text
 var txt = elem.alt;

 if (txt) {
 return txt;
 }

 // skip images without alt text
 return false;
 }
});

 Alternatively, a table of contents can also be created by using XSLT. Both approaches are demonstrated by the two versions of the "Children's Novel" sample.
 You can find them in the PDFreactor/samples/novel directory.

 Shrink-to-Fit

 For some documents parts of the content are too wide to fit the pages. In most cases this is caused by HTML documents containing fixed widths intended for screens,
 e.g. 1024px for the main container element.

 While the best solution is adding a print style sheet to override the critical styles with relative widths, such content can also be shrunk automatically without
 changing the source document or adding specific styles.

 There are two different shrink-to-fit functionalities available in PDFreactor, pixelsPerInchShrinkToFit
 and . These are non-exclusive and are applied in the aforementioned order.

 Shrink-to-fit is only recommended when you need to force content into the boundaries of pages. For high-fidelity print output, these modes should not be
 used.

 Scaling Pixel Lengths

 This configuration property adapts the "pixels per inch" value used for laying out the document, i.e. it only scales lengths set as px including
 such set via HTML attributes.

 config.setPixelsPerInchShrinkToFit(true);

 config.PixelsPerInchShrinkToFit = true;

 $config["pixelsPerInchShrinkToFit"] = true;

 config['pixelsPerInchShrinkToFit'] = True

 config['pixelsPerInchShrinkToFit'] = true

 config.pixelsPerInchShrinkToFit = true;

 config.pixelsPerInchShrinkToFit = true;

 $config["pixelsPerInchShrinkToFit"] = true;

 { "pixelsPerInchShrinkToFit": true }

 --pixelsPerInchShrinkToFit

 The pixels per inch can also be specified manually.

 Scaling Down Page Content

 This property must be part of the @page rule affecting the first page:

 @page {
 -ro-scale-content: auto;
}

 For further details see .

 Page content scaling, if used, always applies to all pages equally. It cannot be applied to only a subset pages
 or page groups.

 Scaling Down Text

 The proprietary value -ro-scale-down of the CSS property
 allows visually scaling down paragraphs that overflow at
 the end of lines to automatically make their text fit their width.

 Contrary to normal text overflow styles, -ro-scale-down also works with multi-line
 text. It then applies the scaling to all lines, so that the whole text content is scaled down
 equally. However, only overflow in inline (i.e. horizontal)
 direction is taken into account to determine whether scaling needs to be applied,
 not overflow in block (i.e. vertical) direction.

 This feature is especially useful if you want to force text whose length you can't control
 into a pre-defined container, such as forcing user-supplied text into an existing form field.

 Vertical Position

 You can control the vertical position of the scaling effect with the CSS
 property and its usual values:
 start, end, center, baseline (default) and
 stretch.

 The value stretch won't scale down the text vertically, instead the text is skewed to keep its
 original height.

 .scaleDown {
 /* Enable text scale down */
 text-overflow: -ro-scale-down;
 /* Make sure we only have a single line */
 white-space: nowrap;
 /* Don't scale vertically */
 align-content: stretch;
}

 Page Order

 Usually, the page order of a PDF is only determined by its input document. However, using the configuration property pageOrder, the page order can be set by providing a
 string parameter.

 For ease of use the following constants are available for the most common cases of page orders:

 	

 REVERSE — The page order is reversed.

	

 EVEN — All even pages are moved before all odd pages.

	

 ODD — All odd pages are moved before all even pages.

	

 BOOKLET — All pages are ordered as in a booklet.

	

 BOOKLET_RTL — All pages are in right-to-left booklet order.

 Instead of using a predefined order the parameter can also provide a custom order as comma-separated list of page numbers and ranges:

 	

 "x,y,z" — New page order x, y, z.

	

 "x..y" — All consecutive pages from x to y.

	

 "x*n" — The page x is repeated n times.

	

 "-x" — Negative page numbers count backwards beginning from the last page and can be used in combination with all of the above.

	

 "A" — All pages of the document. Same result as "1..-1".

 config.setPageOrder("2,5,6*2,8..10,-1,-2");

 config.PageOrder = "2,5,6*2,8..10,-1,-2";

 $config["pageOrder"] = "2,5,6*2,8..10,-1,-2";

 config['pageOrder'] = "2,5,6*2,8..10,-1,-2"

 config['pageOrder'] = "2,5,6*2,8..10,-1,-2"

 config.pageOrder = "2,5,6*2,8..10,-1,-2";

 config.pageOrder = "2,5,6*2,8..10,-1,-2";

 $config["pageOrder"] = "2,5,6*2,8..10,-1,-2";

 { "pageOrder": "2,5,6*2,8..10,-1,-2" }

 --pageOrder "2,5,6*2,8..10,-1,-2"

 The page order shown above results in a PDF having the following page numbers from the original document, assuming it has 20 pages total: 2, 5, 6, 6, 8, 9, 10,
 20, 19.

 	

 "2" — Page 2.

	

 "5" — Page 5.

	

 "6*2" — Page 6 two times.

	

 "8..10" — Pages 8 to 10.

	

 "-1" — The last page, here page 20.

	

 "-2" — The second to last page, here page 19.

 On the Python command line instead of --pageOrder "-1..1" we recommend using --pageOrder="-1..1" to
 specify the page order.

 Merge Mode Arrange

 The syntax of page order is extended when setting the merge mode to MERGE_MODE_ARRANGE.

 As usual, when the merge mode is selected PDFreactor requires one or more merge PDFs to be set (see).

 The merge documents specified with the array are numbered, beginning with one for the first PDF (when specifying a single document, it is also
 addressed with "1").

 To select pages from a merge document, first use its number followed by a colon, which then is followed by the page order syntax described above. Note that the
 converted document can be addressed using "0:", however, this is not necessary, as it is used by default if no document is
 specified.

 config
 .setMergeMode(MergeMode.ARRANGE)
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/insert1.pdf"),
 new Resource().setUri("https://www.myserver.com/insert2.pdf"))
 .setPageOrder("1, 1:1, 2:A, 2..-1, 1:2");

 config.MergeMode = MergeMode.ARRANGE;
config.MergeDocuments = new List<Resource>
{
 new Resource { Uri = "https://www.myserver.com/insert1.pdf" },
 new Resource { Uri = "https://www.myserver.com/insert2.pdf" }
};
config.PageOrder = "1,1:1,2..-1";

 $config["mergeMode"] = MergeMode::ARRANGE;
$config["mergeDocuments"] = array(
 array("uri": "https://www.myserver.com/insert1.pdf"),
 array("uri": "https://www.myserver.com/insert2.pdf")
);
$config["pageOrder"] = "1,1:1,2..-1";

 config['mergeMode'] = PDFreactor.MergeMode.ARRANGE
config['mergeDocuments'] = [
 { 'uri': "https://www.myserver.com/insert1.pdf" },
 { 'uri': "https://www.myserver.com/insert2.pdf" }
]
config['pageOrder'] = "1,1:1,2..-1"

 config['mergeMode'] = PDFreactor::MergeMode::ARRANGE
config['mergeDocuments'] = [
 { uri: "https://www.myserver.com/insert1.pdf" },
 { uri: "https://www.myserver.com/insert2.pdf" }
]
config['pageOrder'] = "1,1:1,2..-1"

 config.mergeMode = PDFreactor.MergeMode.ARRANGE;
config.mergeDocuments = [
 { uri: "https://www.myserver.com/insert1.pdf" },
 { uri: "https://www.myserver.com/insert2.pdf" }
];
config.pageOrder = "1,1:1,2..-1";

 config.mergeMode = PDFreactor.MergeMode.ARRANGE;
config.mergeDocuments = [
 { uri: "https://www.myserver.com/insert1.pdf" },
 { uri: "https://www.myserver.com/insert2.pdf" }
];
config.pageOrder = "1,1:1,2..-1";

 $config["mergeMode"] = PDFreactor::MergeMode->ARRANGE;
$config["mergeDocuments"] = [
 { "uri" => "https://www.myserver.com/insert1.pdf" },
 { "uri" => "https://www.myserver.com/insert2.pdf" }
];
$config["pageOrder"] = "1,1:1,2..-1";

 { "mergeMode": "ARRANGE",
 "mergeDocuments": [
 { "uri": "https://www.myserver.com/insert1.pdf" },
 { "uri": "https://www.myserver.com/insert2.pdf" }
], "pageOrder": "1,1:1,2..-1" }

 -C config.json

 With the following config.json:

 { "mergeMode": "ARRANGE",
 "mergeDocuments": [
 { "uri": "https://www.myserver.com/insert1.pdf" },
 { "uri": "https://www.myserver.com/insert2.pdf" }
], "pageOrder": "1,1:1,2..-1" }

 The order shown above would be:

 	

 "1" — Page 1 from the converted PDF.

	

 "1:1" — Page 1 from insert1.pdf.

	

 "2:A" — All Pages from insert2.pdf.

	

 "2..-1" — Pages 2 to the last page from the converted PDF.

	

 "1:2" — Page 2 from insert1.pdf.

 Pages Per Sheet

 Instead of containing only one page of the input document per PDF page, multiple pages of the input document can be displayed on one sheet.

 The pages will be arranged in a grid on the sheet. The number of columns and rows of this grid are user-defined.

 To utilize Pages Per Sheet use the configuration property pagesPerSheetProperties.

 The properties rows and cols define the corresponding number of pages that get laid out on a single page.
 Their values are required. The values for sheetSize, sheetMargin and spacing
 can be set as CSS width values. direction defines in which way the single pages are ordered.

 There are the following options to set a direction:

 	

 PagesPerSheetDirection.RIGHT_DOWN — The single pages are ordered from left to right and top to bottom. This is the default
 value.

	

 PagesPerSheetDirection.RIGHT_UP — The single pages are ordered from left to right and bottom to top.

	

 PagesPerSheetDirection.LEFT_DOWN — The single pages are ordered from right to left and top to bottom.

	

 PagesPerSheetDirection.LEFT_UP — The single pages are ordered from right to left and bottom to top.

	

 PagesPerSheetDirection.UP_RIGHT — The single pages are ordered from bottom to top and left to right.

	

 PagesPerSheetDirection.UP_LEFT — The single pages are ordered from bottom to top and right to left.

	

 PagesPerSheetDirection.DOWN_RIGHT — The single pages are ordered from top to bottom and left to right.

	

 PagesPerSheetDirection.DOWN_LEFT — The single pages are ordered from top to bottom and right to left.

 config.setPagesPerSheetProperties(new PagesPerSheetProperties()
 .setCols(2)
 .setRows(2)
 .setSheetSize("A4 landscape")
 .setSheetMargin("2.5cm")
 .setSpacing("2cm")
 .setDirection(PagesPerSheetDirection.RIGHT_UP));

 config.PagesPerSheetProperties = new PagesPerSheetProperties
{
 Cols = 2,
 Rows = 2,
 SheetSize = "A4 landscape",
 SheetMargin = "2,5cm",
 Spacing = "2cm",
 Direction = PagesPerSheetDirection.RIGHT_UP
};

 $config["pagesPerSheetProperties"] = array(
 "cols" => 2,
 "rows" => 2,
 "sheetSize" => "A4 landscape",
 "sheetMargin": "2,5cm",
 "spacing" => "2cm",
 "direction" => PagesPerSheetDirection::RIGHT_UP
);

 config['pagesPerSheetProperties'] = {
 'cols': 2,
 'rows': 2,
 'sheetSize': "A4 landscape",
 'sheetMargin': "2,5cm",
 'spacing': "2cm",
 'direction': PDFreactor.PagesPerSheetDirection.RIGHT_UP
}

 config['pagesPerSheetProperties'] = {
 cols: 2,
 rows: 2,
 sheetSize: "A4 landscape",
 sheetMargin: "2,5cm",
 spacing: "2cm",
 direction: PDFreactor::PagesPerSheetDirection::RIGHT_UP
}

 config.pagesPerSheetProperties = {
 cols: 2,
 rows: 2,
 sheetSize: "A4 landscape",
 sheetMargin: "2,5cm",
 spacing: "2cm",
 direction: PDFreactor.PagesPerSheetDirection.RIGHT_UP
};

 config.pagesPerSheetProperties = {
 cols: 2,
 rows: 2,
 sheetSize: "A4 landscape",
 sheetMargin: "2,5cm",
 spacing: "2cm",
 direction: PDFreactor.PagesPerSheetDirection.RIGHT_UP
};

 $config["pagesPerSheetProperties"] = {
 "cols" => 2,
 "rows" => 2,
 "sheetSize" => "A4 landscape",
 "sheetMargin" => "2,5cm",
 "spacing" => "2cm",
 "direction" => PDFreactor::PagesPerSheetDirection->RIGHT_UP
}

 { "pagesPerSheetProperties": {
 "cols": 2,
 "rows": 2,
 "sheetSize": "A4 landscape",
 "sheetMargin": "2,5cm",
 "spacing": "2cm",
 "direction": "RIGHT_UP"
}

 -C config.json

 With the following config.json:

 { "pagesPerSheetProperties": {
 "cols": 2,
 "rows": 2,
 "sheetSize": "A4 landscape",
 "sheetMargin": "2,5cm",
 "spacing": "2cm",
 "direction": "RIGHT_UP"
}

 Booklet

 A Booklet is a set of folded pages meant to be read like a book. PDFreactor supports creating Booklets by combining the functionality with the
 feature.

 It orders the pages in booklet or rtl booklet page order and places two of these pages on each sheet, rotated by 90 degrees and side-to-side.

 A configuration property allows to configure the page size and margins of the container page as well as to use the default booklet page order or a reversed order:

 config.setBookletMode(new BookletMode()
 .setSheetSize("A4 landscape")
 .setSheetMargin("1cm")
 .setRtl(false));

 config.BookletMode = new BookletMode
{
 SheetSize = "A4 landscape",
 SheetMargin = "1cm",
 Rtl = false
};

 $config["bookletMode"] = array(
 "sheetSize" => "A4 landscape",
 "sheetMargin": "1cm",
 "rtl" => false
);

 config['bookletMode'] = {
 'sheetSize': "A4 landscape",
 'sheetMargin': "1cm",
 'rtl': False
}

 config['bookletMode'] = {
 sheetSize: "A4 landscape",
 sheetMargin: "1cm",
 rtl: false
}

 config.bookletMode = {
 sheetSize: "A4 landscape",
 sheetMargin: "1cm",
 rtl: false
};

 config.bookletMode = {
 sheetSize: "A4 landscape",
 sheetMargin: "1cm",
 rtl: false
};

 $config["bookletMode"] = {
 "sheetSize" => "A4 landscape",
 "sheetMargin" => "1cm",
 "rtl" => false
}

 { "bookletMode": {
 "sheetSize": "A4 landscape",
 "sheetMargin": "1cm",
 "rtl": false
}

 -C config.json

 With the following config.json:

 { "bookletMode": {
 "sheetSize": "A4 landscape",
 "sheetMargin": "1cm",
 "rtl": false
}

 Pixels per Inch

 By default, lengths specified in pixels (i.e. via the CSS unit px or HTML attributes) are converted to physical lengths at a rate of 96
 pixels per inch. With the configuration property pixelsPerInch this can be changed, e.g.:

 config.setPixelsPerInch(120);

 config.PixelsPerInch = 120;

 $config["pixelsPerInch"] = 120;

 config['pixelsPerInch'] = 120

 config['pixelsPerInch'] = 120

 config.pixelsPerInch = 120;

 config.pixelsPerInch = 120;

 $config["pixelsPerInch"] = 120;

 { "pixelsPerInch": 120 }

 --pixelsPerInch 120

 Increasing the pixels per inch can be used to shrink documents that would be to wide for pages due to fixed widths originally intended for screens.

 Finding the optimum value can be automated using shrink to fit.

 Internationalization

 Languages

 PDFreactor supports Unicode and includes default fonts for various non-Latin languages. See for more information on the
 included fonts and on how to add additional fonts.

 You can specify a language for the whole document either by using the HTML lang attribute or by specifying a default in the API:

 <html lang="de-DE">

 config.setDocumentDefaultLanguage("de-DE");

 config.DocumentDefaultLanguage = "de-DE";

 $config["documentDefaultLanguage"] = "de-DE";

 config['documentDefaultLanguage'] = "de-DE"

 config['documentDefaultLanguage'] = "de-DE"

 config.documentDefaultLanguage = "de-DE";

 config.documentDefaultLanguage = "de-DE";

 $config["documentDefaultLanguage"] = "de-DE";

 { "documentDefaultLanguage": "de-DE" }

 --documentDefaultLanguage "de-DE"

 The specified language will be used for automatic hyphenation of text (see) and also conveys important
 information to screen readers when reading accessible PDFs (see). It is required to specify
 the document language when producing accessible PDFs, otherwise PDFreactor may use "en-US" as the default.

 Counters and list item markers can also be displayed in numerous languages and writing systems.
 See for all supported styles.

 lang attributes can also be used to change the language for parts of the document.

 Right-to-Left

 PDFreactor analyzes the document to handle both left-to-right and right-to-left text correctly.

 The base direction of the document defaults to left-to-right. You can set it to right-to-left by specifying the dir attribute on the
 root element as in the following example:

 <html dir="rtl">

 You can also override the base direction specifically for certain elements via the property :

 div.english {
 direction: rtl;
}

 You can override the implicit text direction by combining direction with the property :

 span.forcertl {
 unicode-bidi: bidi-override;
 direction: ltr;
}

 Text Direction Dependent Layouts

 Using "logical" properties and values, as opposed to the common "physical" ones, allows layouts based on the text direction, instead of fixed "left" and "right"
 sides. They are mapped to physical sides based on the value of the direction property, which may be ltr (left-to-right, default) or rtl
 (right-to-left).

 The "International Sample" document in the PDFreactor package demonstrates the usage of these properties and values. It can be found in the PDFreactor/samples/i18n directory.

 The following tables list the direction dependent logical properties and values as well as the resulting physical ones for both left-to-right and right-to-left direction:

 Logical Properties	Property	LTR	RTL
	padding-inline	padding-left padding-right	padding-right padding-left
	padding-inline-start	padding-left	padding-right
	padding-inline-end	padding-right	padding-left
	border-inline-start	border-left	border-right
	border-inline-end	border-right	border-left
	border-inline-start-color	border-left-color	border-right-color
	border-inline-end-color	border-right-color	border-left-color
	border-inline-start-style	border-left-style	border-right-style
	border-inline-end-style	border-right-style	border-left-style
	border-inline-start-width	border-left-width	border-right-width
	border-inline-end-width	border-right-width	border-left-width
	border-start-start-radius	border-top-left-radius	border-top-right-radius
	border-start-end-radius	border-top-right-radius	border-top-left-radius
	border-end-start-radius	border-bottom-left-radius	border-bottom-right-radius
	border-end-end-radius	border-bottom-right-radius	border-bottom-left-radius
	margin-inline	margin-left margin-right	margin-right margin-left
	margin-inline-start	margin-left	margin-right
	margin-inline-end	margin-right	margin-left
	inset-inline	left right	right left
	inset-inline-start	left	right
	inset-inline-end	right	left

 New Logical Values for float and clear
 	Property	LTR	RTL
	inline-start	left	right
	inline-end	right	left

 Media Queries

 Media Types

 Media Queries are a CSS3 extension of media types. Media types allow to have styles that are only applied if the device or application displaying the document
 accepts the specified type. For example the following media rule will only be applied if the device accepts the media type print
 (which PDFreactor does):

 @media print {
 p {
 background-color: transparent;
 }
}

 If the styles of a certain media type have to be applied, but that media type is not accepted by PDFreactor (e.g. @media screen),
 the required media types can be set via API:

 config.setMediaTypes("screen", "projection", "print");

 config.MediaTypes = new List<string> { "screen", "projection", "print" }

 $config["mediaTypes"] = array("screen", "projection", "print");

 config['mediaTypes'] = ["screen", "projection", "print"]

 config['mediaTypes'] = ["screen", "projection", "print"]

 config.mediaTypes = ["screen", "projection", "print"];

 config.mediaTypes = ["screen", "projection", "print"];

 $config["mediaTypes"] = ["screen", "projection", "print"];

 { "mediaTypes": ["screen", "projection", "print"]}

 --mediaTypes "screen" "projection" "print"

 This example sets the three media types screen, projection and print,
 thereby overriding PDFreactor's default types.

 CSS that should only be used by PDFreactor can either be added by using the API or if they depend on the specific document you can use the proprietary media
 type -ro-pdfreactor.

 For example the following rule disables the page background color only if the document is used by PDFreactor:

 @media -ro-pdfreactor {
 @page {
 background-color: transparent;
 }
}

 Media Features

 Media Queries allow to make styles dependent on certain device features like width and height of the viewport. As they extend media types they may start with
 one type which can be followed by media features, each linked with the keyword and.

 Media features describe certain device properties, are always enclosed by parentheses and resemble CSS properties. Additionally, most features may be prefixed
 with min- or max- in order to express "greater or equal to" and "less or equal to" relationships to
 their value.

 @media print and (max-device-width: 1024px) {
 ...
}

 The styles of this media rule are only applied if the device width is 1024px or less.

 The device properties for conversions can be set using the API:

 config.setMediaFeatureValues(new MediaFeatureValue()
 .setMediaFeature(MediaFeature.DEVICE_WIDTH)
 .setValue("1024px"));

 config.MediaFeatureValues = new MediaFeatureValue
{
 MediaFeature = MediaFeature.DEVICE_WIDTH,
 Value = "1024px"
};

 $config["mediaFeatureValues"] = array(
 array(
 "mediaFeature" => MediaFeature::DEVICE_WIDTH,
 "value" => "1024px"
)
);

 config['mediaFeatureValues'] = [{
 'mediaFeature': PDFreactor.MediaFeature.DEVICE_WIDTH,
 'value': "1024px"
}]

 config['mediaFeatureValues'] = [{
 mediaFeature: PDFreactor::MediaFeature::DEVICE_WIDTH,
 value: "1024px"
}]

 config.mediaFeatureValues = [{
 mediaFeature: PDFreactor.MediaFeature.DEVICE_WIDTH,
 value: "1024px"
}];

 config.mediaFeatureValues = [{
 mediaFeature: PDFreactor.MediaFeature.DEVICE_WIDTH,
 value: "1024px"
}];

 $config["mediaFeatureValues"] = [{
 "mediaFeature" => PDFreactor::MediaFeature->DEVICE_WIDTH,
 "value" => "1024px"
}];

 { "mediaFeatureValues": [{
 "mediaFeature": "DEVICE_WIDTH",
 "value": "1024px" }
}]}

 -C config.json

 With the following config.json:

 { "mediaFeatureValues": [{
 "mediaFeature": "DEVICE_WIDTH",
 "value": "1024px"
}]}

 The following table provides an overview of the supported media features. The default values can be found in the PDFreactor API documentation.

 Supported media features	Feature Name	Description	min-/max-
	width	The width of the targeted display area.	Yes
	height	The height of the targeted display area.	Yes
	device-width	The width of the rendering surface.	Yes
	device-height	The height of the rendering surface.	Yes
	orientation	Is portrait if height is greater than or equal to width,
 or landscape otherwise.
 	No
	aspect-ratio	Calculated from width and height. The value is a fraction, e.g. 16/10.
 	Yes
	device-aspect-ratio	Calculated from the device-width and device-height. The value is a
 fraction, e.g. 16/9.
 	Yes
	color	The number of bits per color component of the output device.	Yes
	color-index	The number of entries in the color lookup table.	Yes
	monochrome	The number of bits per pixel in a monochrome frame buffer.	Yes
	resolution	The device resolution in dpi, dpcm or dppx.
 This also defines the value of the window.devicePixelRatio property available from JavaScript.
 	Yes
	grid	Whether the device is grid or bitmap based.	No
	-ro-output-format	(proprietary) The output format of the conversion, either pdf, image or viewer (i.e. PDFreactor Preview app).
 	No

 PDFreactor does not take account of the values of CSS properties in the document when determining the values of media features. For example, setting the
 page height to 50mm will have no effect on a media query that tests the max-height of the document. Instead, the media features
 supported by PDFreactor all have default values (for details see the Configuration.MediaFeature class in the PDFreactor API
 documentation). These default values can be overridden through the PDFreactor API.

 Document-Specific Preferences

 PDFreactor allows setting certain configurations via the CSS of the document that is converted. This is done using the proprietary at-rule @-ro-preferences.

 Example:

 @-ro-preferences {
 /* The first page of the document should not be a cover page */
 first-page-side: verso;
}

 @-ro-preferences properties	Property Name	Values	Description
	first-page-side	
 	

 left

	

 right

	

 verso

	

 recto

	

 auto (default)

 	Sets on which side the first page of the document should be. By default it is right, unless the document
 direction is right-to-left.

	first-page-side-view	
 	

 left

	

 right

	

 verso

	

 recto

	

 auto (default)

 	Sets on which side the first page of the document should appear in viewers, without impact on styles or layout. By default it is the
 same side as set by first-page-side.

	page-layout	
 	

 1 column

	

 2 column

	

 1 page

	

 2 page

 	Sets the initial view mode for the document. Whether two pages should be next to each other and how scrolling between the pages
 should work.
	initial-zoom	
 	
 [percentage]

	

 fit-page

	

 fit-page-width

	

 fit-page-height

	

 fit-content

	

 fit-content-width

	

 fit-content-height

 	Sets the initial zoom factor when opening the document. Can either be a specific percentage value or the zoom factor can be computed
 dynamically so that the page (or its content) fits into the window of the viewer application. Please note, that not all fit-values are supported by all
 viewers. Generally, fit-page support is more common.
	initial-page	
 	
 [number]

 	Sets number of the page that should be scrolled to when opening the document. The default value is 1.

	pdf-script-action	
 	
 [String]

	
 [String] [event] ...

	
 none

 	Sets a PDF script that is executed when the PDF is opened by a viewer application, that supports PDF scripts and the corresponding
 event is triggered (e.g. on opening the PDF). This can also be set via the PDFreactor API. If set by both, the scripts set via API are overridden by
 those set via the CSS property (only if both are registered on the same event). The property allows a comma separated list of action and event pairs.
 More information can be found in the property
 description.

	pages-counter-offset	
 	
 [number]

 	Sets an optional offset to be added to the value of the pages counter. Negative values are valid. The
 default value is 0.

	pdf-shape-optimization	
 	

 visual (default)

	

 none

 	Sets whether shapes should be written into the PDF in a way that prevents visualization issues in certain PDF viewers.

 Converting Large Documents

 In most cases, PDFreactor is able to handle even very large documents,
 provided that enough memory is made available. However, if there is not enough memory available
 or if large tables cause conversions to be too slow, PDFreactor offers specialized functionalities
 that disable certain resource intensive features to allow processing such documents much more efficiently
 in regards to memory and time. Those can be used separately or in combination.

 Segmentation

 Enabling segmentation allows PDFreactor to internally split conversions into multiple parts,
 drastically reducing the amount of memory required for large documents.
 The minimum document size for this to be noticeable depends on the complexity of the input document,
 but 5000 pages is a good estimate. This has no visible influence on the resulting PDF document,
 i.e. the edges of segments are not discernible. However there are some limitations:

 	Regions are not supported.

	Shrink-to-Fit via pixelsPerInchShrinkToFit
 or -ro-scale-content is not supported.

	The pageOrder setting is not supported.

	The "pages" counter is not supported. This does not affect the
 	"page" counter, other counters or named strings.

	Using the function outside of page margin boxes
 	may cause unpredictable results. When it is absolutely necessary it is highly recommended to use
 on an ancestor element of the ones using the value.

	"tfoot"" and "thead" elements must be placed before the
 "tbody" or "tr" elements of the same "table".
 (If the document is not too large this can be corrected via JavaScript.)

	All "style" elements must be in the header.

	Due to the total amount of pages being unknown during the conversion of any segment but the last,
 log output and progress monitoring cannot estimate the progress of the conversion.

	For the CSS functions target-counter and
 target-text to be able to access information from previous segments
 the property must be used.

	, when enabled, is run in a preprocessing step with no access
 to any layout information and increases memory consumption to some extend.

 If these restrictions are acceptable, the feature can be enabled in the PDFreactor configuration:

 config.setSegmentationSettings(new SegmentationSettings()
 .setEnabled(true));

 config.SegmentationSettings = new SegmentationSettings
{
 Enabled = true
};

 $config["segmentationSettings"] = array(
 "enabled" => true
);

 config['segmentationSettings'] = {
 'enabled': True
}

 config['segmentationSettings'] = {
 enabled: true
}

 config.segmentationSettings = {
 enabled: true
};

 config.segmentationSettings = {
 enabled: true
};

 $config["segmentationSettings"] = {
 "enabled" => true
};

 { "segmentationSettings": {
 "enabled": true
}}

 -C config.json

 With the following config.json:

 { "segmentationSettings": {
 "enabled": true
}}

 Some optional functionalities increase the amount of memory required,
 due to data accumulating over the course of the entire conversion. These include
 links, bookmarks, tagging and logging at levels more verbose than info.

 Fast Tables

 Very large tables have a significant impact on performance. Tables that
 have simple structures and only basic sets of styles can be declared as
 fast tables, providing significantly better performance and lower memory requirements
 at the cost of the following restrictions:

 	
 Cell content is handled as a single line of text with uniform style and no
 influence on the table layout. If there is too much content, it will overflow.

	
 Styles applied to the cells of the first two body rows are
 used for the rest of the table's content. Applying different styles to
 the second row allows alternating even/odd styles. Styles set on the
 child nodes of cells or other table body rows are ignored.

	
 The structure is homogeneous, with all body rows having the same height
 and the cells of the first row (header or body) defining the widths of their
 columns. Widths are taken from style only, without measuring content.
 Column or row spans are not supported. Missing row elements and other
 incorrect structuring will lead to unexpected results.

	
 Supported styles on cells are: ,
 , ,
 , ,
 , ,
 , ,
 , ,
 border-right,
 border-bottom,
 and related shorthands.

	
 Supported styles on rows are: ,
 and related shorthands.

	
 Supported styles on col elements are: ,
 and related shorthands.

	
 The cell borders are created by using the border-right and border-bottom
 styles, creating a grid between the cells, similar to the effect of border-collapse: collapse.
 The borders at the table edges are created from the styles of the table element.

 Table footer cells are an exception as they use their border-top
 styles (instead of border-bottom) to create the horizontal border
 between body and footer cells.

	
 Repeating table header and footer groups are limited to one row each.
 Those are styled independently from the table body.

	
 All lengths must be absolute, except for the widths of columns which also support percentages.

	
 The style set on the table element is also used
 for all cells. The property is not supported.

	
 PDF tagging functionality has no access to the
 content of such tables. By default fast tables are marked as artifacts.

 If these restrictions are acceptable, the feature can be enabled by setting the style
 : -ro-fast-table on table elements.
 The style can be applied selectively, to affect only specific tables of the document.

 Recommendations for Large Documents

 Enabling not only reduces the size of the resulting file,
 it also eliminates some inherent size limitations of the PDF format.

 When converting via the Java API, an OutputStream should be
 passed to the convert method, so the document is streamed
 directly to disk or socket instead of keeping it in memory.

 When converting via the web service, the convertAsync method should be used.
 See and for details.

 Many PDF viewers and processors will not properly handle PDF files that are larger than 2GB.

 Annotations

 When using PDFs in a review process it is helpful to be able to effectively annotate the document. While HTML already provides elements
 like ins and del, PDFreactor also offers more specialized features.

 Comments

 It is possible to add PDF comments to the document using the addComments configuration property like this:

 config.setAddComments(true);

 config.AddComments = true;

 $config["addComments"] = true;

 config['addComments'] = True

 config['addComments'] = true

 config.addComments = true;

 config.addComments = true;

 $config["addComments"] = true;

 { "addComments": true }

 --addComments

 Depending on how the comment information is stored in your HTML source document, there are several style rules that can be applied. The most common use-cases
 are to either create a comment from an empty element (where any information is stored in its attributes) or to create a comment from a non-empty element (where
 the content is the text encompassed by the element):

 HTML

 CSS

 span.comment {
 -ro-comment-content: attr(text);
}

 HTML

 This text is commented

 CSS

 span.comment {
 -ro-comment-content: content();
}

 There are different styles to visualize a comment in the PDF:

 	

 note: Creates a small icon. This is the default style for all comments.

	

 invisible: Does not create any visual effects.

	

 highlight: Highlights the background of a section of text.

	

 underline: Underlines a section of text with a straight line.

	

 strikeout: Strikes out a section of text.

	

 squiggly: Underlines a section of text with a squiggly line.

 The comment styles highlight, underline, strikeout and squiggly are only applicable to comments that encompass a section of text.

 The following example demonstrates how to style a simple comment.

 HTML

 This is a styled comment

 CSS

 span.comment {
 -ro-comment-content: content();
 -ro-comment-style: underline;
}

 The visualization is ultimately dependent on the PDF viewer and may vary across viewers and/or platforms.

 Comments can be customized further by using a variety of style rules. Besides content and style, you can also customize the following properties:

 	

 Title: The title of the comment. In some cases, this is also used for the author. Use the CSS property to specify the title.

	

 Color: The color of the comment. The default value for the color depends on the comment style chosen. Use the CSS property
 to set a color.

	

 Date: The date of the comment. When no date is specified, the current date is used. Use the CSS property to set the date.

	

 Date Format: The format of the date you specified. The syntax is identical to Java's SimpleDateFormat SimpleDateFormat API documentation:
 https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
 . Use the CSS property to specify a date format for the
 comment's date.

	

 Position: The position of the comment icon (only applicable for the comment style note). Use
 the CSS property to specify a position for the comment's
 note icon.

	

 Initial state: The initial state of the comment, i.e. whether the comment should be open or closed when the PDF is opened
 in a viewer. Use the CSS property to specify the initial state
 of the comment bubbles. The state can be either open or closed with the latter being the
 default value.

 The following sample shows how to customize all of the aforementioned properties.

 .comment {
 /* Content: get the content of the comment from the text content of the element */
 -ro-comment-content: content();
 /* Title: get the title from the "author" attribute of the element */
 -ro-comment-title: attr(author);
 /* Style: set the comment style to "note" */
 -ro-comment-style: note;
 /* Color: specify a color for the comment */
 -ro-comment-color: steelblue;
 /* Date: get the date from the "date" attribute of the element */
 -ro-comment-date: attr(date);
 /* Date Format: specify a custom date format */
 -ro-comment-dateformat: "yyyy/dd/MM HH:mm:ss";
 /* Position: shift the comment icon to the right side of the page */
 -ro-comment-position: page-right;
 /* Initial state: open comment bubbles when the PDF is opened */
 -ro-comment-state: open;
 /* additional styles */
}

 Please see the documentation of the individual CSS properties for more information.

 Advanced Comments

 In some cases, comments have a separate start and end tag. In this case the additional style rules -ro-comment-start or -ro-comment-end have to be set to match the comment's start and end elements.

 commentstart {
 /* some customizations */
 -ro-comment-content: attr(text);
 -ro-comment-title: attr(author);
 -ro-comment-style: highlight;

 /* define the comment start element */
 -ro-comment-start: attr(uid)
}

commentend {
 /* define the comment end element */
 -ro-comment-end: attr(uid);
}

 Change Bars

 Especially when marking only a single word or even less, the usual highlighting styles may not be enough. In such cases,
 PDFreactor's Change Bars can help to draw attention. A change bar is simply a colored line next to the content, on the
 same height as the element that enabled it.

 The proprietary property -ro-change-bar-color enables them when set to a color.

 ins {
 -ro-change-bar-color: yellowgreen;
}

del {
 -ro-change-bar-color: orangered;
}

 To prevent different kinds (i.e. colors) of change bars from overlapping, each change bar can be assigned a different offset from the page content edge, by
 setting -ro-change-bar-offset.

 Alternatively, it is also possible to move a change bar to the other page side altogether by using
 -ro-change-bar-align. This property defines where the change bars are positioned. By default, the bars
 are positioned in the left (or right) page margin area. If they come from a multi-column element, however, it makes sense to position them next to the columns.

 .multi-column ins {
 -ro-change-bar-color: yellowgreen;
 -ro-change-bar-width: thick;
 -ro-change-bar-align: outside column;
}

 In the sample above, the bars will be placed next the respective column, while the side of the column depends on the side of the page. With outside
 meaning right side for right pages and left side for left pages. There is another special settings best used for multi-columns with only two columns. The
 value distribute-column is combined with page and distributes the change bars on the left and the right side of the page, depending
 on which side is closer to the column in which the change bar originates.

 .multi-column ins {
 -ro-change-bar-color: yellowgreen;
 -ro-change-bar-align: outside distribute-column page;
}

 Fonts

 To be able to display text PDFreactor requires font data. This font data must be in TTF True Type Font
 or in OTF Open Type Font
 format and may come from different types of sources (see Font Sources).

 Using OpenType fonts with CFF outlines requires Java SE 9 or higher.

 Font Sources

 The font data of PDFreactor may come from different types of sources.

 Core Fonts Pack

 PDFreactor contains fonts that will be used for the Default
 Font Mapping when no other fonts could be registered on the system, e.g. because of insufficient file permissions or due to the fact that there are no fonts
 available.

 These fonts are distributed by RealObjects and licensed by their respective authors under the SIL Open Font License A free and
 open source license designed for fonts (https://scripts.sil.org/cms/scripts/page.php?id=OFL_web)
 or are in the Public Domain

 The packaged core fonts are:	Original Font Name	Type	PDFreactor Font Name	License
	Arimo	sans-serif	RealObjects core sans-serif	SIL Open Font License, Version 1.1
	Tinos	serif	RealObjects core serif	SIL Open Font License, Version 1.1
	Cousine	monospace	RealObjects core monospace	SIL Open Font License, Version 1.1
	Dancing Script	cursive	RealObjects core cursive	SIL Open Font License, Version 1.1
	Orbitron	fantasy	RealObjects core fantasy	SIL Open Font License, Version 1.1
	Quivira	symbol	RealObjects core symbol	Public Domain (http://en.quivira-font.com/notes.php)

 Additionally the core fonts contain fallback fonts for symbols and characters from non-Latin languages.
 Those are the Noto fonts (SIL Open Font License), Nanum Gothic (SIL Open Font License), and Droid Sans
 Fallback (Apache License).

 System and JVM Font Directories

 The main sources PDFreactor uses to retrieve font data are:

 	
 fonts registered with the Java VM

	
 fonts located in system font folders

 Both provide fonts physically available to PDFreactor.

 Java VM fonts are usually located in JAVA_HOME/jre/lib/fonts. The location of system font folders is platform dependent.
 PDFreactor registers fonts from these sources automatically.

 If PDFreactor was unable to retrieve any font data, fonts from the Core Fonts Pack will be used. (see).

 On Linux systems PDFreactor requires the fontconfig program library and basic system fonts such as dejavu fonts to be able to use system fonts.
 On some Linux distributions these packages may not be installed by default.

 PDFreactor can be configured to ignore all system fonts and only use fonts that either have been specifically added via configuration properties
 or that are web fonts from style sheets. This is useful if the system either has no fonts or if you want to avoid system-dependent
 output. See for examples.

 Additional Fonts & Font Directories

 PDFreactor allows setting additional fonts that are neither located in the system font directory nor the font directory of the
 Java VM. These fonts still need to be physically available to PDFreactor.

 To register these fonts with PDFreactor via the API, use the following configuration properties:

 	

 fontDirectories — The fonts in the specified directories and all their subdirectories will be used by PDFreactor.

	

 fonts — Additional fonts from a specified source URL.

 For each directory added by the fontDirectories property and for each of their subdirectories, a separate font cache is created. Should the
 contents of these directories change, please delete the font cache files before running PDFreactor. See the Chapter The Font Cache Mechanism for more information about the font cache.

 Font directories can be added like this:

 config.setFontDirectories("/myFonts1", "/myFonts2/corporate");

 Use the fontDirs server parameter to control custom font directories.

 Use the fontDirs server parameter to control custom font directories.

 Use the fontDirs server parameter to control custom font directories.

 Use the fontDirs server parameter to control custom font directories.

 Use the fontDirs server parameter to control custom font directories.

 Use the fontDirs server parameter to control custom font directories.

 Use the fontDirs server parameter to control custom font directories.

 Use the fontDirs server parameter to control custom font directories.

 Use the fontDirs server parameter to control custom font directories.

 --fontDirectories "/myFonts1" "/myFonts2/corporate"

 Instead of adding entire font directories that PDFreactor will scan, you can also add specific fonts like this:

 config.setFonts(
 new Font().setFamily("My Font")
 .setBold(true)
 .setItalic(true)
 .setSource("https://url/to/font.ttf"));

 config.Fonts = new List
{
 new Font()
 {
 Family = "My Font"
 Bold = true
 Italic = true
 Source = "https://url/to/font.ttf"
 }
};

 config.fonts = [
 {
 family: "My Font",
 bold: true,
 italic: true,
 source: "https://url/to/font.ttf"
 }
];

 config.fonts = [
 {
 family: "My Font",
 bold: true,
 italic: true,
 source: "https://url/to/font.ttf"
 }
];

 $config["fonts"] = array(
 array(
 "family" => "My Font",
 "bold" => true,
 "italic" => true,
 "source" => "https://url/to/font.ttf"
)
);

 config['fonts'] = [
 {
 'family': 'My Font',
 'bold': True,
 'italic': True,
 'source': 'https://url/to/font.ttf'
 }
]

 config['fonts'] = [
 {
 'family': 'My Font',
 'bold': true,
 'italic': true,
 'source': 'https://url/to/font.ttf'
 }
]

 $config["fonts"] = [
 {
 "family" => "My Font",
 "bold" => true,
 "italic" => true,
 "source" => "https://url/to/font.ttf"
 }
);

 { "fonts": [
 {
 "family": "My Font",
 "bold": true,
 "italic": true,
 "source": "https://url/to/font.ttf"
 }
]}

 -C config.json

 With the following config.json:

 { "fonts": [
 {
 "family": "My Font",
 "bold": true,
 "italic": true,
 "source": "https://url/to/font.ttf"
 }
]}

 See Docker Configuration on how to deploy fonts when using the PDFreactor Docker image.

 CSS Defined Fonts

 PDFreactor is capable of using fonts defined in CSS via the @font-face rule. These fonts are
 retrieved by PDFreactor along with other resources of the document (e.g. images) and will only be used to render the document
 they belong to.

 @font-face {
 font-family: "My Font";
 src: url("https://www.my-server.com/fonts/my-font.ttf");
}

 The Font Cache Mechanism

 PDFreactor uses a font cache to store required information about available fonts.

 Font Cache Lifecycle

 One of the steps PDFreactor performs on startup is registering fonts. The first time this is done will take some time since every
 font inside the font directories available to PDFreactor will be identified and registered.

 At the end of this step PDFreactor creates font cache files that will be used on subsequent starts to significantly reduce its
 startup time. The font caching ensures the rendering process will start as soon as possible.

 If a font cache file is present, new fonts put into the font directories available to PDFreactor will be ignored by PDFreactor unless the font cache file has been deleted. Then PDFreactor will create a new font cache
 file on the next startup as it would on its first one.

 To delete the font cache file, visit the user.home/.PDFreactor directory and delete all files inside it.

 When using the PDFreactor Web Service, the font cache is located in the jetty/pdfreactor/fontcache
 directory of your PDFreactor installation instead (unless otherwise configured, see Customizing the Server Configuration)

 Controlling the Font Registration and Caching Mechanism

 It is possible to customize the registration and caching of fonts via the API.

 The following configuration properties are used to control the font handling behavior of PDFreactor:

 	

 fontCachePath — Specifies the location where the font cache file should be stored.

	

 cacheFonts — Activates or deactivates the file system font cache.

	

 disableSystemFonts — If set to true, PDFreactor will neither register system fonts, nor
 use the font cache if it exists.

	

 disableFontRegistration — Specifies that parts of the font caching mechanism should be disabled. This is a legacy property. In nearly all cases you should use either cacheFonts or disableSystemFonts.

 As mentioned before, the default font cache is located in the user.home/.PDFreactor directory. To customize this location,
 you can use the configuration property fontCachePath.

 config.setFontCachePath("/myPDFreactor/fontcache/cache.dat");

 Use the fontCacheDir server parameter to control the font cache location.

 Use the fontCacheDir server parameter to control the font cache location.

 Use the fontCacheDir server parameter to control the font cache location.

 Use the fontCacheDir server parameter to control the font cache location.

 Use the fontCacheDir server parameter to control the font cache location.

 Use the fontCacheDir server parameter to control the font cache location.

 Use the fontCacheDir server parameter to control the font cache location.

 Use the fontCacheDir server parameter to control the font cache location.

 Use the fontCacheDir server parameter to control the font cache location.

 --fontCachePath "/myPDFreactor/fontcache/cache.dat"

 If it is undesireable to create a font cache on the server’s file system, e.g. because PDFreactor does not have sufficient privileges to do so, you can use the cacheFonts to disable
 the font cache.

 config.setCacheFonts(false);

 Use the disableFontCache server parameter to control the file system font cache.

 Use the disableFontCache server parameter to control the file system font cache.

 Use the disableFontCache server parameter to control the file system font cache.

 Use the disableFontCache server parameter to control the file system font cache.

 Use the disableFontCache server parameter to control the file system font cache.

 Use the disableFontCache server parameter to control the file system font cache.

 Use the disableFontCache server parameter to control the file system font cache.

 Use the disableFontCache server parameter to control the file system font cache.

 Use the disableFontCache server parameter to control the file system font cache.

 --cacheFonts false

 PDFreactor can be configured to ignore all system fonts and only use fonts that either have been specifically added via configuration properties
 or that are web fonts from style sheets:

 config.setDisableSystemFonts(true);

 Use the disableSystemFonts server parameter to control system font usage.

 Use the disableSystemFonts server parameter to control system font usage.

 Use the disableSystemFonts server parameter to control system font usage.

 Use the disableSystemFonts server parameter to control system font usage.

 Use the disableSystemFonts server parameter to control system font usage.

 Use the disableSystemFonts server parameter to control system font usage.

 Use the disableSystemFonts server parameter to control system font usage.

 Use the disableSystemFonts server parameter to control system font usage.

 Use the disableSystemFonts server parameter to control system font usage.

 --disableSystemFonts

 Font Matching

 Matching Generic Font Families

 Browsers usually match the generic font families with fonts installed on the
 host system, but PDFreactor consciously matches them with its own specific core fonts. This is done so that documents
 which use generic font families look consistent across all systems, no matter which fonts (if any) are installed.

 Should it be required to match generic font families with other fonts, it is recommended to use
 to e.g. map the family name "serif" to the desired font.

 The generic font families are mapped as follows:

 Generic Font Mapping	Generic Font Family	Matched Core Font	First System Font Tried*
	sans-serif	Arimo	Arial
	serif	Tinos	Times New Roman
	monospace	Cousine	Courier New
	cursive	Dancing Script	Comic Sans MS
	fantasy	Orbitron	Impact

 * System fonts are only used as fallback if the core fonts are unavailable, e.g. by using the modular PDFreactor JAR and ommitting the core fonts JAR.

 Font Alias Names

 It is possible to add a font alias name for a font available in the system font directory or the font directory of the Java VM. The font alias name allows
 referencing to a font using a different name.

 Authors can thus use a font alias name as the font-family value in CSS instead of the actual font name. Exchanging the font in all these documents can be
 done by changing the actual font behind the alias.

 To define a font alias name via the Java API use the following configuration property:

 	

 fontAliases — Alias families for registered fonts.

 The following example maps the registered font Arial to the name "My Font". So each time you refer to the name "My Font" in CSS, Arial is used internally.

 config.setFontAliases(
 new Font().setFamily("My Font")
 .setSource("Arial"));

 config.FontAliases = new List
{
 new Font()
 {
 Family = "My Font"
 Source = "Arial"
 }
};

 config.fontAliases = [
 {
 family: "My Font",
 source: "Arial"
 }
];

 config.fontAliases = [
 {
 family: "My Font",
 source: "Arial"
 }
];

 $config["fontAliases"] = array(
 array(
 "family" => "My Font",
 "source" => "Arial"
)
);

 config['fontAliases'] = [
 {
 'family': 'My Font',
 'source': 'Arial'
 }
]

 config['fontAliases'] = [
 {
 'family': 'My Font',
 'source': 'Arial'
 }
]

 $config["fontAliases"] = [
 {
 "family" => "My Font",
 "source" => "Arial"
 }
);

 { "fontAliases": [
 {
 "family": "My Font",
 "source": "Arial"
 }
]}

 -C config.json

 With the following config.json:

 { "fontAliases": [
 {
 "family": "My Font",
 "source": "Arial"
 }
]}

 Automatic Font Fallback

 Whenever the current font cannot be used to display a certain character, an automatic font fallback is used to find a replacement font for this character. To
 do so fonts are iterated according to the following parameters:

 	
 The font-family property of the current element

	
 The configuration property fontFallback

	
 An internal list of recommended fonts

	
 All fonts on the system, starting with those with the most glyphs

 A list of fallback fonts can be specified like this:

 config.setFontFallback("My Font", "Arial");

 config.FontFallback = new List<String> { "My Font", "Arial" };

 $config["fontFallback"] = array("My Font", "Arial");

 config['fontFallback'] = ["My Font", "Arial"]

 config['fontFallback'] = ["My Font", "Arial"]

 config.fontFallback = ["My Font", "Arial"];

 config.fontFallback = ["My Font", "Arial"];

 $config["fontFallback"] = ["My Font", "Arial"];

 { "fontFallback": ["My Font", "Arial"] }

 --fontFallback "My Font" "Arial"

 JavaScript Objects and Types

 Objects

 ro

 The ro or window.ro object provides access to PDFreactor's proprietary
 JavaScript API.

 	exports ?
	

 Data that will be made available to the outside integration API. See

	layout Layout
	
 Proprietary layout information.

	pdf PDF
	
 Runtime PDFreactor API

 	 terminateConversion Stringmessage

	

 Terminates the current PDF conversion at the next possible moment, causing PDFreactor to throw an appropriate exception with a
 message equal to the parameter of this method.

 	message String
	
 The exception message.

 layout

 PDFreactor allows JavaScript access to some layout information via the proprietary object ro.layout.

 	 getPageDescription Numberindex

	

 Returns a PageDescription for the page with the given index. The first page has the index 0.

 	index Number
	
 The page index.

	 getBoxDescriptions Elementelement

	

 Returns an array of BoxDescription objects for the given element. Note that one element can
 have several boxes (e.g. when a paragraph is spread over multiple pages).

 	element Element
	
 The DOM element.

	 String getContent
 Elementelement StringpseudoElement

	

 Returns a string containing the layout text content of the specified element and its descendants. The layout text can
 differ from the DOM text content due to processing, including white-space collapsing and the addition of generated content.

 	element Element
	
 The DOM element.

	pseudoElement String
	
 A string specifying which content to return:

 	

 "before": Retrieves the "before" generated content of the element.

	

 "after": Retrieves the "after" generated content of the element.

	

 "text": Retrieves the content of the element, excluding its generated content.

	

 "all": Retrieves the content of the element.

 If omitted "all" will be applied as default.

 Both "text" and "all" includes the generated content of all descendants.

	 String getContent
 NumberpageIndex StringmarginBox

	

 Returns a string containing the content of the page margin box of the specified page.

 	pageIndex Number
	
 The page of the page margin box. The first page has the index 0.

	marginBox String
	

 A string specifying the page margin box, eg. "top-left", see .

 	numberOfPages Number
	
 Returns the current total number of pages of the document.

 pdf

 It is possible to use certain PDF-specific parts of the PDFreactor API during runtime via the
 proprietary object ro.pdf.

 	addAttachments Boolean
	
 Enables or disables attachments specified in style sheets.

 	addComments Boolean
	
 Enables or disables comments in the PDF document.

 	addOverprint Boolean
	
 Enables or disables overprinting.

 	addPreviewImages Boolean
	
 Enables or disables embedding of image previews per page in the PDF document.

 	addTags Boolean
	
 Enables or disables tagging of the PDF document.

 	allowAnnotations Boolean
	
 Enables or disables the 'annotations' restriction in the PDF document.

 	allowAssembly Boolean
	
 Enables or disables the 'assembly' restriction in the PDF document.

 	allowCopy Boolean
	
 Enables or disables the 'copy' restriction in the PDF document.

 	allowDegradedPrinting Boolean
	
 Enables or disables the 'degraded printing' restriction in the PDF document.

 	allowFillIn Boolean
	
 Enables or disables the 'fill in' restriction in the PDF document.

 	allowModifyContents Boolean
	
 Enables or disables the 'modify contents' restriction in the PDF document.

 	allowPrinting Boolean
	
 Enables or disables the 'printing' restriction in the PDF document.

 	allowScreenReaders Boolean
	
 Enables or disables the 'screen readers' restriction in the PDF document.

 	attachments
	

 Adds a file attachment to PDF document. All attachments that have been set previously in the PDFreactor integration
 are included as attachments with binary content which will be base64-encoded.

 	author String
	
 Sets the value of the author field of the PDF document.

 	bookletMode
	
 Convenience method to set pages-per-sheet properties and page order in one step to create a booklet.

 	creator String
	
 Sets the value of creator field of the PDF document.

 	customDocumentProperties

	
 Adds custom properties to the PDF document. An existing property of the same name will be replaced.

 	disableBookmarks Boolean
	
 Disables bookmarks in the PDF document.

 	disableLinks Boolean
	
 Disables links in the PDF document.

 	encryption String
	

 Use one of the encryption constants to specify the encryption:

 	

 "none": Indicates that the document will not be encrypted. If encryption is disabled then no user password and
 no owner password can be used.

	

 "type_128": Indicates that the document will be encrypted using RC4 128 bit encryption. For normal purposes
 this value should be used.

	

 "type_40": Indicates that the document will be encrypted using RC4 40 bit encryption.

 	keywords String
	
 Sets the value of the keywords field of the PDF document.

 	ownerPassword Boolean
	
 Sets the owner password of the PDF document.

 	pageOrder String
	
 Sets the page order of the direct result of the conversion.

 If the merge mode is set to ARRANGE (see), this
 property is also used to specify the position of inserted pages from an existing PDF.

 A description of the syntax can be found in the section.

 Additionally, the pageOrder constants can be used:

 	

 "BOOKLET": Page order mode to arrange all pages in booklet order.

	

 "BOOKLET_RTL": Page order mode to arrange all pages in right-to-left booklet order.

	

 "EVEN": Page order mode to keep even pages only.

	

 "ODD": Page order mode to keep odd pages only.

	

 "REVERSE": Page order mode to reverse the page order.

 	pagesPerSheetProperties
	
 Sets the properties of a sheet on which multiple pages are being arranged.

 If cols or rows is less than 1, no pages-per-sheet processing is done. This is the case by default.

 	pdfScriptActions
	
 Sets a pair of trigger event and PDF script. The script is triggered on the specified event.

 A PDF script is JavaScript that is executed by a PDF viewer (e.g. Adobe Reader). Note that most viewers do not support this feature.

 PDF Scripts can also be set by using the proprietary CSS property pdf-script-action. More information on this property can be found here pdf-script-action.

 Please note, that scripts set via CSS have a higher priority. If two scripts are registered on the same event, but one via API and the other via
 the CSS property, the script set in the CSS will override the other one.

 	printDialogPrompt Boolean
	
 Enables or disables a print dialog to be shown upon opening the generated PDF document by a PDF viewer.

 	subject String
	
 Sets the value of the subject field of the PDF document.

 	title String
	
 Sets the value of the title field of the PDF document.

 	userPassword String
	
 Sets the user password of the PDF document.

 Types

 DOMRect

 A contains the position and dimensions of a rectangle.

 	left Number
	
 The x-coordinate.

	right Number
	
 The x-coordinate plus the width.

	top Number
	
 The y-coordinate.

	bottom Number
	
 The y-coordinate plus the height.

	width Number
	
 The width.

	height Number
	
 The height.

 Range

 Contains information about a fragment of a document that can contain nodes and parts of text nodes.

 	startContainer Node
	

 Returns the DOM Node within which the range starts.

	startOffset Number
	
 Returns the offset in the startContainer at which the range starts.

	endContainer Node
	

 Returns the DOM Node within which the range ends.

	endOffset Number
	
 Returns the offset in the endContainer at which the range ends.

 Proprietary Types

 BoxDescription

 Describes the position and dimensions of the rectangles of a box as well as some further information. The rectangles are described
 by using .

 	pageIndex Number
	
 The index of the page of this box. The first page has the index 0.

	pageLeft Boolean
	
 Whether the page of this box is on the left.

	pageDescription PageDescription
	

 The PageDescription of the page of this box. It contains the data of the page from the moment when this BoxDescription was
 created.

	lineDescriptions
	

 Returns an array of LineDescriptions for this box if the box contains text directly.

	generatedContentDescriptions
	

 Returns an object providing access to BoxDescription arrays for the generated content via type name strings.
 Available generated content type names are "before" and "after" (for normal HTML elements) and "content" (for page margin boxes).
 Please note that generated content of inline elements is not yet accessible in this way.

	columnIndex Number
	

 For boxes inside a multi-column layout this returns the index of the column the box is in. Otherwise it returns -1.
 The index starts at 0 for the first column of the multi-column container element. It increases by one for each further column or column-span and is not reset on new pages or by column spans.

	columnIndexLocal Number
	

 For boxes inside a multi-column layout this returns the local index of the column the box is in. Otherwise it returns -1.
 The local index starts at 0 for the first column of the multi-column container element. It increases by one for each further column and is reset to 0 on new pages as well as on and after column spans.

	regionIndex Number
	

 For boxes inside a Region this returns the index of that region. Otherwise it returns -1.
 The index starts at 0 for the first region in its chain. It increases by one for each further region in the same chain and is not reset on new pages.

	regionIndexLocal Number
	

 For boxes inside a Region this returns the local index of that region. Otherwise it returns -1.
 The local index starts at 0 for the first region in its chain. It increases by one for each further region in the same chain and is reset to 0 on new pages.

 	 getMarginRect Stringunit

	

 Returns a DOMRect describing the margin rectangle. The point of origin is the upper left
 corner of the page content rectangle.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getBorderRect Stringunit

	

 Returns a DOMRect describing the border rectangle. The point of origin is the upper left
 corner of the page content rectangle.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getPaddingRect Stringunit

	

 Returns a DOMRect describing the padding rectangle. The point of origin is the upper left
 corner of the page content rectangle.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getContentRect Stringunit

	

 Returns a DOMRect describing the content rectangle. The point of origin is the upper left
 corner of the page content rectangle.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getMarginRectInPage Stringunit

	

 Returns a DOMRect describing the margin rectangle. The point of origin is the upper left
 corner of the page rectangle.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getBorderRectInPage Stringunit

	

 Returns a DOMRect describing the border rectangle. The point of origin is the upper left
 corner of the page rectangle.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getPaddingRectInPage Stringunit

	

 Returns a DOMRect describing the padding rectangle. The point of origin is the upper left
 corner of the page rectangle.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getContentRectInPage Stringunit

	

 Returns a DOMRect describing the content rectangle. The point of origin is the upper left
 corner of the page rectangle.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getBoundingLineContentRect Stringunit

	

 Returns a DOMRect describing the union of the content rectangles of the LineDescriptions
 contained in this box, i.e. the bounding rectangle of all text content of the box. The coordinates are relative to the box contaning this lines.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

 PageDescription

 Describes the dimensions of a page and its rectangles as well as some further information. The rectangles are described by using s.

 	pageIndex Number
	
 The index of this page. The first page has the index 0.

	pageLeft Boolean
	
 Whether this page is on the left.

	pageName String
	

 The name of this page, if it is a named page and an empty string otherwise.

	pageGroups String
	

 An array containing all names of this page or an empty array if there are none.

	range
	

 The DOM Range of the content of this page. The start- and endContainer are the most deeply nested nodes at the respective
 page breaks. Returns null if the page is empty.

	rangeShallow
	

 The DOM Range of the content of this page. The start- and endContainer are the least deeply nested nodes at the respective
 page breaks. Returns null if the page is empty.

	marginBoxDescriptions
	

 Returns an object providing access to BoxDescriptions for the page margin boxes via margin box name strings like "top-left".
 The BoxDescriptions for the content of a margin box are available via the 'content' key of its generatedContentDescriptions object.

 	 getMediaRect Stringunit

	

 Returns a DOMRect describing the media box of the page.

 The position is relative to the media/trim rectangle, so both values are negative or 0.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getBleedRect Stringunit

	

 Returns a DOMRect describing the bleed box of the page.

 The position is relative to the media/trim rectangle, so both values are negative or 0.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getTrimRect Stringunit

	

 Returns a DOMRect describing the trim box of the page.
 This is a synonym for getMarginRect and matches the page size.

 The position is relative to the media/trim rectangle itself, so both values are always 0.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getMarginRect Stringunit

	

 Returns a DOMRect describing the margin rectangle of the page.
 This is a synonym for getTrimRect and matches the page size.

 The position is relative to the media/trim rectangle itself, so both values are always 0.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getBorderRect Stringunit

	

 Returns a DOMRect describing the border rectangle of the page.

 The position is relative to the media/trim rectangle, so both values are positiv or 0.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getPaddingRect Stringunit

	

 Returns a DOMRect describing the padding rectangle of the page.

 The position is relative to the media/trim rectangle, so both values are positiv or 0.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getContentRect Stringunit

	

 Returns a DOMRect describing the content rectangle of the page.

 The position is relative to the media/trim rectangle, so both values are positiv or 0.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getCropRect Stringunit

	

 Returns a DOMRect describing the crop box of the page or null if none is set.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getArtRect Stringunit

	

 Returns a DOMRect describing the art box of the page or null if none is set.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

 LineDescription

 Contains information about a line of text. It can be retrieved from a .

 	range
	

 The DOM Range from the beginning to the end of the text of the line or null for empty lines.

 	 Number getBaselinePosition
 Stringunit

	

 Returns the vertical distance between the baseline position of the line and the top of the content rectangle of the box
 containing the line.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

	 getContentRect Stringunit

	

 Returns a DOMRect describing the content rectangle of the line, specifically the part of the
 line actually containing text. The coordinates are relative to the box contaning this line.

 	unit String
	
 The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

 Attachment

 A JavaScript object containing data for attachments.
 Unlike the attachments in the normal PDFreactor configuration, these attachments contain text by default, not binary data.
 It is still possible to attach binary data, however you have to base64-encode the data and set the binary property to true.

 	data String|Blob
	
 The textual or base64-encoded binary content of the attachment. Binary content can also be a Blob. May be omitted.

	url String
	
 If data is not specified, the attachment will be retrieved from this URL. If this is "#" the input document URL is used instead.

	name String
	
 The file name associated with the attachment. It is recommended to specify the correct file extension. If this is omitted the name is derived
 from the URL.

	description String
	
 The description of the attachment. If this is omitted the name is used.

	binary Boolean
	

 This property indicates whether the data property contains base64-encoded binary data or not. If omitted it is treated as false,
 meaning that the attachment content is treated as UTF-8 encoded text, unless it is a Blob.

 BookletMode

 A JavaScript object containing data for bookletMode.

 	sheetSize String
	
 The size of the sheet as CSS value, e.g. "A3", "letter landscape", "15in 20in", "20cm 30cm".

	sheetMargin String
	
 The sheet size as CSS size, e.g. "A4", "letter landscape", "15in 20in", "20cm 30cm".

	rtl Boolean
	
 Whether or not the reading order of the booklet should be right-to-left.

 KeyValuePair

 A JavaScript object containing data for customDocumentProperties.

 	key String
	
 The key.

	value String
	
 The value.

 PagesPerSheetProperties

 A JavaScript object containing data for pagesPerSheetProperties.

 	cols Number
	
 The number of columns per sheet.

	rows Number
	
 The number of rows per sheet.

	sheetSize String
	
 The sheet size as CSS size, e.g. "A4", "letter landscape", "15in 20in", "20cm 30cm".

	sheetMargin String
	
 The sheet margin as CSS margin, e.g. "1in", "1cm 1.5cm", "10mm 20mm 10mm 30mm". null is interpreted as 0mm.

	spacing String
	
 The horizontal and vertical space between pages on a sheet as CSS value,
 for example "0.1in" or "5mm 2mm". null is interpreted as "0mm".

	direction String
	
 The direction in which the pages are ordered on a sheet. Value is one of the following constants:

 	

 "DOWN_LEFT": Arranges the pages on a sheet from top to bottom and right to left.

 	

 "DOWN_RIGHT": Arranges the pages on a sheet from top to bottom and left to right.

 	

 "LEFT_DOWN": Arranges the pages on a sheet from right to left and top to bottom.

 	

 "LEFT_UP": Arranges the pages on a sheet from right to left and bottom to top.

 	

 "RIGHT_DOWN": Arranges the pages on a sheet from left to right and top to bottom.

 	

 "RIGHT_UP": Arranges the pages on a sheet from left to right and bottom to top.

 	

 "UP_LEFT": Arranges the pages on a sheet from bottom to top and right to left.

 	

 "UP_RIGHT": Arranges the pages on a sheet from bottom to top and left to right.

 PdfScriptAction

 A JavaScript object containing data for pdfScriptActions.

 	triggerEvent String
	
 The event on which the script is executed. Value is one of the following constants:

 	

 "AFTER_PRINT": This event is triggered after the PDF has been printed by the viewer application.

 	

 "AFTER_SAVE": This event is triggered after the PDF has been saved by the viewer application.

 	

 "BEFORE_PRINT": This event is triggered before the PDF is printed by the viewer application.

 	

 "BEFORE_SAVE": This event is triggered before the PDF is saved by the viewer application.

 	

 "CLOSE": This event is triggered when the PDF is closed by the viewer application.

 	

 "OPEN": This event is triggered when the PDF is opened in the viewer application.

	script String
	
 The script source that should be executed.

 PDFreactor Web Service Server Configuration

 The PDFreactor Web Service server can be configured by using the following server parameters. For additional information,
 please refer to chapter .

 The property "type" indicates with data type is used for the parameter. Some parameters also have a "unit" which is the
 unit the server parameter refers to. It is only mentioned for information purposes.

 	adminKey
	

 This parameter specifies a key for privileged access to the service.

 See:
 for more information.

 Type:
 String

	adminKeyPath
	

 Similar to , but specifies the path to a file containing the admin key.
 If the path of this parameter indicates a directory, the contents of the file adminkey.txt are used,
 if present within the directory.

 See:
 for more information.

 Type:
 Path

	apiKeys
	

 This parameter specifies a comma separated list of strings that are used as API keys.

 See:
 for more information.

 Type:
 List<String>

	apiKeysPath
	

 Similar to , but instead of a comma separated list it specifies the path to
 a file containing a JSON object with API keys as keys and a description as value.
 If the path of this parameter indicates a directory, the contents of the file apikeys.json are used,
 if present within the directory.

 See:
 for more information.

 Type:
 Path

	assetPackageFiles
	

 This parameter limits the maximum number of files that an asset package may contain. A value of 0 or a
 negative value indicates that there is no file limit. The default value is 1000.

 Type:
 Integer

 Unit:
Amount

	assetPackageMaxSize
	

 Limits the maximum size of the asset package (in bytes). A value of 0 or a negative value indicates
 that there is no size limit. By default, no maximum size is configured.

 Type:
 Long

 Unit:
Bytes

	callbackMaxTimeout
	

 Callback timeouts with a negative or zero value are treated as an infinite timeout. If infinite timeouts
 are undesirable for your server, you can limit it to this value (in milliseconds). By default, no maximum timeout is configured.

 Type:
 Integer

 Unit:
Milliseconds

	callbackTimeout
	

 When clients specify callbacks without a timeout, this value will be used as a default timeout (in milliseconds)
 for connections to the callback URL. The default value is 30000 (30 seconds).

 Type:
 Integer

 Unit:
Milliseconds

	cleanupInterval
	

 This parameter specifies the interval (in days) at which the PDFreactor Web Service deletes asynchronous
 conversion results that have not been retrieved. The default value is 5.

 Type:
 Integer

 Unit:
Days

	conversionCacheSize
	

 This parameter specifies the amount of conversions that are kept in memory (only their metadata, without the document).
 Otherwise they have to be reloaded from the file system.

 Type:
 Integer

 Unit:
Amount

	conversionTimeout
	

 Specifies a timeout in seconds after which conversions automatically terminate. Specifying the value "0"
 means that there is no timeout. By default, no timeout is configured.

 Type:
 Integer

 Unit:
Seconds

	debugLocalDir
	

 This specifies the directory where debug files will be dumped by PDFreactor
 in case debug mode is enabled and no converted document could be created.

 Type:
 Path

	disableDocTemp
	

 If set to true, the Web Service will not use a temp folder. This also means
 that asynchronous conversions are not available. Synchronous conversions will be done in-memory, so make sure that the Web Service has sufficient
 amounts of memory available.

 Type:
 Boolean

	disableFontCache
	

 If set to true, the Web Service will not use a file-based font cache.
 Generally, this is not recommended since the font cache will then have to be created for every conversion which is likely to have a significant
 performance impact. The default value is false.

 Type:
 Boolean

	disableFontRegistration
	

 If set to true, font registration is disabled and any existing font
 cache will be ignored and the font directories will be scanned for font information. The default value is false.

 Type:
 Boolean

	disableSystemFonts
	

 If set to true, PDFreactor will neither
 scan for nor use system fonts that are installed on the server. Only fonts specified via CSS and via the server parameter fontDirs
 as well as PDFreactor internal fonts will be used.

 Type:
 Boolean

	docTempDir
	

 This parameter specifies the location of the Web Service's temporary folder which is used to store
 asynchronously converted documents. The pre-configured location is the pdfreactor/doctemp directory
 in the PDFreactor/jetty directory.

 Type:
 Path

	docTempStructure
	

 This parameter configures the structure of the directory where PDFreactor stores temporary documents. If set to flat (the
 default value), all documents are placed in the same directory.
 If set to datetime, temporary documents are placed in subfolders representing the date and hour when the conversion started.
 A flat structure is recommended when using a shared temporary document storage directory.

 Type:
 Enum

 Values:
 datetime | flat

	docTempRetentionPeriod
	

 Asynchronous conversions create temporary files on the server, which are automatically deleted when
 they are read once. If results of asynchronous conversions are not accessed, these files remain on the server and are deleted after a certain amount of
 days equal to this parameter. The default value is 5 (days).
 A negative value means that abandoned temporary files will never be deleted.

 Type:
 Integer

 Unit:
Days

	fontCacheDir
	

 This specifies the directory of the font cache, which will be created by PDFreactor.
 If no path is specified, the font cache will be created in PDFreactor/jetty/pdfreactor/fontcache.

 Type:
 Path

	fontDirs
	

 This parameter takes a colon or semicolon separated list of directories that PDFreactor
 should scan for fonts.

 Type:
 List<Path>

	ignoreClientPriority
	

 If set to true, the Web Service will ignore any priority specified
 via the priority property in the client's Configuration object.

 Type:
 Boolean

	licenseKeyPath
	

 Specifies a file system path, either directly to the license key file
 or to a directory where the license key file is located.

 Type:
 Path

	licenseKeyUrl
	

 Specifies a URL where the license key file is
 located.

 Type:
 URL

	overrideConfig
	

 A URL or path to a file containing a server-side configuration which is used to override any properties in the configuration send by clients.
 The file must be a Configuration object in JSON format.

 Type:
 URL

	securitySettings.allowExternalXmlParserResources
	

 This parameter specifies whether the XML parser will process external XML resources during parsing, e.g. DTDs, entities, XInlcudes.
 This does not affect HTML5 document processing.

 Type:
 Boolean

	securitySettings.allowRedirects
	

 This parameter specifies whether to allow automatic URL redirects when PDFreactor receives appropriate status codes.

 Type:
 Boolean

	securitySettings.connectionRules
	

 A URL or path to a file containing a list of rules that PDFreactor evaluates and then either denies or allows connections to a particular resource.
 The file must be a JSON array of ConnectionRule objects in JSON format.

 Type:
 URL

	securitySettings.defaults.allowAddresses
	

 This parameter specifies a list of address types to where PDFreactor is allowed to connect.

 Type:
 List<Enum>

 Values:
 link_local | local | private | public

	securitySettings.defaults.allowFileSystemAccess
	

 This parameter specified whether to allow document resources such as CSS or JavaScript file system access.

 Type:
 Boolean

	securitySettings.defaults.allowProtocols
	

 This parameter specifies a list of allowed URL protocols. URLs with protocols not in this list will be blocked.
 Note that "file" protocols are handled by instead.

 Type:
 List<String>

	securitySettings.defaults.allowSameBasePath
	

 This parameter specifies whether to allow loading of document resources that have the same base path as the document.

 Type:
 Boolean

	securitySettings.hideVersionInfo
	

 Specifies whether PDFreactor will include version information in the PDF metadata or in response headers.

 Type:
 Boolean

	securitySettings.untrustedApi
	

 Specifies whether the PDFreactor configuration object is considered an untrusted context for the purpose of
 security. If it is a trusted context, URLs that are specified in the configuration object are not vetted against the security settings
 and are always allowed. If it is not trusted, the same security settings that are used for document resources apply
 to all configuration resources (including the document) as well.

 Type:
 Boolean

	serverLogLevel
	

 This parameter configures the log level of the server's log. The following levels are available:

 	severe (least verbose)
	warning
	info
	config
	fine
	finer
	finest (most verbose)

 The level off disables server logging. The default value is config.

 Type:
 Enum

 Values:
 all | config | fine | finer | finest | info | off | severe | warning

	serverLogMode
	

 This parameter configures the log mode of the server. If set to bulk (the
 default value), the entire log output of a PDF conversion is dumped after the conversion is finished. This can also be set to live
 which outputs log entries directly. However if there are multiple conversions in parallel, log entries from other conversions may be written out at the
 same time, so there is no guarantee that you will receive a coherent log of a single conversion (contrary to bulk). The
 mode off disables the server-side logging of all conversions.

 Type:
 Enum

 Values:
 bulk | live | off

	systemdLogLevel
	

 This parameter configures Systemd logging. If this parameter is configured, log messages
will be logged to the Systemd log in addition to the server log file. Available values are SEVERE,
 WARNING, CONFIG, and INFO. Systemd logging is only
 supported for Linux system that support Systemd. You can access PDFreactor logs through their identifier, e.g.
journalctl -t pdfreactor

 Type:
 Enum

 Values:
 config | info | severe | warning

	threadPoolSize
	

 This parameter determines the number of parallel conversions that can be performed by the PDFreactor Web Service. Please note that while there is no maximum
 value for this, only a thread pool size that is lower
 as or equal to the system's maximum amount of threads will increase performance when converting documents in parallel. The default value is calculated
 from the system's number of processors.

 Type:
 Integer

 Unit:
Amount

 Supported Barcode Types and Properties

 PDFreactor supports the following barcode symbologies, each handling some of the -ro-barcode-* CSS properties differently.

 These -ro-barcode-* properties apply to all barcode types:

 	-ro-barcode-type
	-ro-barcode-content
	-ro-barcode-color

 These apply to all barcode types with human readable text:

 	-ro-barcode-human-readable-position
	-ro-barcode-font-size
	-ro-barcode-font-family

 -ro-barcode-encoding applies to all barcode types, however they don't necessarily support all 3 available data types.

 -ro-barcode-size applies to most barcode types. If the property is not explicitly mentioned, it adjusts the bar height.

 Please refer to the CSS documentation for more information.

 Some barcode symbologies impose additional restrictions on the input data besides limiting the allowed characters.

 If the -ro-barcode-type property is mentioned below, the entry always refers to its optional last argument.

 .barcode {
 -ro-replacedelement: barcode;
 -ro-barcode-type: code2of5 interleaved enabled;
 -ro-barcode-content: "1234567890";
}

 QR Code

 The QR Code bar code symbology according to ISO/IEC 18004:2015.

 Identifier: qrcode

 Allowed Characters: The Latin-1 set and Kanji characters which are members of the Shift-JIS encoding scheme.

 Supported Data Types: eci, hibc, gs1

 	
 -ro-barcode-size

	Default Value	Possible Values	Description
	
 auto
 	
 1 - 40
 	
 Selects a QR code size, refer to the QR code version table for more detailed information.

 	
 -ro-barcode-ecc-level

	Default Value	Possible Values	Description
	
 auto
 	
 L, M, Q, H
 	
 Sets the error correction level.

 QR Code Version Table

 	-ro-barcode-size	Symbol Size
	1 	21 x 21
	2 	25 x 25
	3 	29 x 29
	4 	33 x 33
	5 	37 x 37
	6 	41 x 41
	7 	45 x 45
	8 	49 x 49
	9 	53 x 53
	10 	57 x 57
	11 	61 x 61
	12 	65 x 65
	13 	69 x 69
	14 	73 x 73

 	-ro-barcode-size	Symbol Size
	15 	77 x 77
	16 	81 x 81
	17 	85 x 85
	18 	89 x 89
	19 	93 x 93
	20 	97 x 97
	21 	101 x 101
	22 	105 x 105
	23 	109 x 109
	24 	113 x 113
	25 	117 x 117
	26 	121 x 121
	27 	125 x 125

 	-ro-barcode-size	Symbol Size
	28 	129 x 129
	29 	133 x 133
	30 	137 x 137
	31 	141 x 141
	32 	145 x 145
	33 	149 x 149
	34 	153 x 153
	35 	157 x 157
	36 	161 x 161
	37 	165 x 165
	38 	169 x 169
	39 	173 x 173
	40 	177 x 177

 Code 128

 The Code 128 barcode symbology as defined in ISO/IEC 15417:2007.

 Identifier: code128

 Allowed Characters: 8-bit ISO 8859-1 (Latin-1) characters.

 Supported Data Types: eci, hibc, gs1

 	
 -ro-barcode-type

	Default Value	Possible Values	Description
	
 disabled
 	
 enabled, disabled
 	
 Defines whether to prohibit the barcode from using subset mode C for numeric data compression.

 	
 -ro-barcode-reader-initialization

	Default Value	Possible Values	Description
	
 disabled
 	
 enabled, disabled
 	
 Defines whether reader initialization instructions should be added to the barcode.

 Code 32

 Code 32, also known as Italian Pharmacode.

 Identifier: code32

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 Code 49

 Code 49 according to ANSI/AIM-BC6-2000.

 Identifier: code49

 Allowed Characters: ASCII

 Supported Data Types: eci, hibc, gs1

 Code 11

 Identifier: code11

 Allowed Characters: 0-9 and dash (-).

 Supported Data Types: eci, hibc

 	
 -ro-barcode-human-readable-affix

	Default Value	Possible Values	Description
	
 none
 	
 One or two strings with a length of 1.
 	
 Determines the affix characters at the beginning and the end of the human readable text.
 The first argument sets the prefix, while the second sets the suffix. If the second is omitted, the first argument sets both.

 	
 -ro-barcode-type

	Default Value	Possible Values	Description
	
 2
 	
 1 or 2
 	
 Sets the number of checkdigits to be calculated.

 Code 93

 Identifier: code93

 Allowed Characters: ASCII text.

 Supported Data Types: eci, hibc

 	
 -ro-barcode-human-readable-affix

	Default Value	Possible Values	Description
	
 none
 	
 A string with a length of 1.
 	
 Determines the affix characters at the beginning and the end of the human readable text.
 When applied to a Code 93 barcode, this affix sets both the prefix and suffix.

 	
 -ro-barcode-type

	Default Value	Possible Values	Description
	
 2
 	
 1 or 2
 	
 Sets the number of checkdigits to be calculated.

 Code16k

 Identifier: code16k

 	
 -ro-barcode-reader-initialization

	Default Value	Possible Values	Description
	
 disabled
 	
 enabled, disabled
 	
 Defines whether reader initialization instructions should be added to the barcode.

 PDF417

 The PDF417/MicroPDF417 bar code symbologies according to ISO/IEC 15438:2006 and ISO/IEC 24728:2006.

 Identifier: pdf417

 Default Subtype: normal

 Allowed Characters: ASCII

 Supported Data Types: eci, hibc

 Supported Subtypes	Identifier	Description
	normal	A typical PDF417 barcode.
	truncated	As opposed to a normal PDF417, its truncated version are missing one data codeword and the stop bars from each row.
	micro	A smaller version of PDF417 codes.

 	
 -ro-barcode-ecc-level

	Default Value	Possible Values	Description
	
 auto
 	
 0-8
 	
 Sets the error correction level. Does not apply to MicroPDF417.

 	
 -ro-barcode-size

	Default Value	Possible Values	Description
	
 auto
 	
 Columns: 1-30 for (truncated) PDF417, 1-4 for MicroPDF417.

 Rows: 3-90 for (truncated) PDF417, 4-44 for MicroPDF417.
 	
 Sets the number of columns and rows this barcode should contain. The first value defines the columns, the second defines the rows.

 	
 -ro-barcode-structured-append

	Default Value	Possible Values	Description
	
 none
 	
 Positive integers
 	
 Defines a structured series. The first value sets the total number of barcodes belonging to it, the second value defines the ID of the series.

 	
 -ro-barcode-structured-append-position

	Default Value	Possible Values	Description
	
 auto
 	
 Positive integers
 	
 Defines the position of this barcode within a structured series.

 	
 -ro-barcode-reader-initialization

	Default Value	Possible Values	Description
	
 disabled
 	
 enabled, disabled
 	
 Defines whether reader initialization instructions should be added to the barcode.

 Australia Post

 Identifier: auspost

 Supported Data Types: eci, hibc

 Australia Post Reply Paid

 Identifier: ausreply

 Supported Data Types: eci, hibc

 Australia Post Routing

 Identifier: ausroute

 Supported Data Types: eci, hibc

 Australia Post Redirect

 Identifier: ausredirect

 Supported Data Types: eci, hibc

 Code 3 of 9

 The code 3 of 9 bar code symbology according to ISO/IEC 16388:2007.

 Identifier: code39

 Default Subtype: normal

 Allowed Characters: 0-9, A-Z, dash (-), full stop (.), space, dollar ($), slash (/), plus (+) and percent (%). ASCII for Code 3 of 9 extended.

 Supported Data Types: eci, hibc

 Supported Subtypes	Identifier	Description
	normal	A standard Code 3 of 9.
	extended	An extended version which is able to encode all ASCII characters.

 	
 -ro-barcode-checkdigit-mode

	Default Value	Possible Values	Description
	
 none
 	
 mod43, none
 	
 Sets whether checkdigits should be calculated.

 MSI Plessey

 Identifier: msiplessey

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 	
 -ro-barcode-checkdigit-mode

	Default Value	Possible Values	Description
	
 none
 	
 none, mod10, mod11, mod1010, mod1011
 	
 Sets how checkdigits should be calculated.

 Channel Code

 Channel Code according to ANSI/AIM BC12-1998.

 Identifier: channelcode

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 	
 -ro-barcode-type

	Default Value	Possible Values	Description
	
 auto
 	
 3 - 8
 	
 Sets the preferred amount of channels used to encode the data.

 Codabar

 Codabar barcode symbology according to BS EN 798:1996.

 Also known as NW-7, Monarch, Code 27, Ames Code, USD-4 and ABC Codabar.

 Identifier: codabar

 Allowed Characters: 0-9, dash (-), dollar ($), colon (:), slash (/), full stop (.) and plus (+)

 Content must start and end with "A", "B", "C", or "D"

 Supported Data Types: eci, hibc

 EAN-8

 EAN bar code symbology according to BS EN 797:1996

 Identifier: ean-8

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 	
 -ro-barcode-type

	Default Value	Possible Values	Description
	
 auto
 	
 An absolute length.
 	
 Changes the guard length of the barcode.

 EAN-13

 EAN bar code symbology according to BS EN 797:1996

 Identifier: ean-13

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 	
 -ro-barcode-type

	Default Value	Possible Values	Description
	
 auto
 	
 An absolute length.
 	
 Changes the guard length of the barcode.

 UPC-A

 UPC bar code symbology according to BS EN 797:1996.

 Identifier: upc-a

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 	
 -ro-barcode-type

	Default Value	Possible Values	Description
	
 auto
 	
 An absolute length.
 	
 Changes the guard length of the barcode.

 UPC-E

 UPC bar code symbology according to BS EN 797:1996.

 Identifier: upc-e

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 	
 -ro-barcode-type

	Default Value	Possible Values	Description
	
 auto
 	
 An absolute length.
 	
 Changes the guard length of the barcode.

 Ean/UPC Addon

 EAN/UPC add-on bar code symbology according to BS EN 797:1996.

 Identifier: addon

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 Telepen

 Also known as Telepen Alpha.

 Identifier: telepen

 Allowed Characters: ASCII

 Default Subtype: normal

 Supported Data Types: eci, hibc

 Supported Subtypes	Identifier	Description
	normal	Allows all ASCII content.
	numeric	Only allows numeric content.

 GS1 Databar / Databar 14

 GS1 DataBar according to ISO/IEC 24724:2011

 Identifier: databar

 Default Subtype: linear

 Allowed Characters: 0-9

 Supported Data Types: gs1, but with an omitted Application Identifer and check digit. Thus not considered GS1 format data.

 Supported Subtypes	Identifier	Description
	linear	Standard Databar.
	stacked	A stacked version, which is smaller that a linear databar, but not omnidirectional.
	omnidirectional	A stacked omnidirectional Databar.

 GS1 Databar Expanded / Databar 14 Expanded

 GS1 DataBar Expanded according to ISO/IEC 24724:2011

 Identifier: databar-expanded

 Default Subtype: normal

 Allowed Characters: 0-9

 Supported Data Types: gs1

 Supported Subtypes	Identifier	Description
	normal	Standard GS1 Databar Expanded.
	stacked	A stacked version of the GS1 Databar Expanded.

 	
 -ro-barcode-size

	Default Value	Possible Values	Description
	
 auto
 	
 An integer between 1 and 10 to set the column count, a length to set the bar length or both.
 	
 Sets the bar length and the number of columns/symbol segments this barcode should contain.

 GS1 Databar Limited

 GS1 DataBar Limited according to ISO/IEC 24724:2011

 Identifier: databar-limited

 Allowed Characters: 0-9

 Supported Data Types: gs1, but with an omitted Application Identifer and check digit. Thus not considered GS1 format data.

 Dutch Post Kix Code

 Dutch Post KIX Code as used by Royal Dutch TPG Post (Netherlands).

 Identifier: kixcode

 Allowed Characters: 0-9, A-Z

 Supported Data Types: eci, hibc

 Japan Post

 The Japanese Postal Code symbology

 Identifier: japan-post

 Allowed Characters: 0-9, A-Z and the dash (-) character

 Supported Data Types: eci, hibc

 Royal Mail

 Royal Mail 4-State Country Code

 Identifier: royal-mail

 Allowed Characters: 0-9, A-Z

 Supported Data Types: eci, hibc

 Korea Post

 Identifier: korea-post

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 USPS OneCode (Intelligent Mail)

 USPS OneCode (Intelligent Mail Barcode) according to USPS-B-3200F

 Identifier: usps-onecode

 Allowed Characters: 0-9, dash (-)

 Supported Data Types: eci, hibc

 USPS Package

 USPS Intelligent Mail Package Barcode (IMpb), a linear barcode based on GS1-128.

 Identifier: usps-package

 Allowed Characters: 0-9

 Supported Data Types: gs1

 POSTNET (Postal Numeric Encoding Technique)

 The POSTNET (Postal Numeric Encoding Technique) barcode symbology used by the United States Postal Service.

 Identifier: postnet

 Default Subtype: normal

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 Supported Subtypes	Identifier	Description
	normal	A standard POSTNET code.
	planet	A Postal Alpha Numeric Encoding Technique (PLANET) barcode.

 Pharmazentralnummer (PZN-8)

 A Code 39 based symbology used by the pharmaceutical industry in Germany.

 Identifier: pzn8

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 Pharmacode

 Identifier: pharmacode

 Default Subtype: onetrack

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 Supported Subtypes	Identifier	Description
	onetrack	A Pharmacode consisting of one track.
	twotrack	A Phramacode consisting of two tracks.

 Codablock-F

 Symbology according to AIM Europe "Uniform Symbology Specification - Codablock F", 1995.

 Identifier: codablockf

 Allowed Characters: 8-bit ISO 8859-1 (Latin-1)

 Supported Data Types: eci, hibc

 Logmars

 The LOGMARS (Logistics Applications of Automated Marking and Reading Symbols) standard used by the US Department of Defense.

 Identifier: logmars

 Allowed Characters: 0-9, A-Z, dash (-), full stop (.), space, dollar ($), slash (/), plus (+) and percent (%).

 Supported Data Types: eci, hibc

 Aztec Runes

 Aztec Runes bar code symbology according to ISO/IEC 24778:2008 Annex A.

 Identifier: aztec-runes

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 Aztec Code

 Aztec Code bar code symbology According to ISO/IEC 24778:2008.

 Identifier: aztec-code

 Allowed Characters: 8-bit ISO 8859-1 (Latin-1)

 Supported Data Types: eci, hibc, gs1

 	
 -ro-barcode-reader-initialization

	Default Value	Possible Values	Description
	
 disabled
 	
 enabled, disabled
 	
 Defines whether reader initialization instructions should be added to the barcode.

 	
 -ro-barcode-ecc-level

	Default Value	Possible Values	Description
	
 auto
 	
 	Value	Error Correction Capacity
	1	> 10% + 3 codewords
	2	> 23% + 3 codewords
	3	> 36% + 3 codewords
	4	> 50% + 3 codewords

 	
 Sets the error correction level.

 	
 -ro-barcode-size

	Default Value	Possible Values	Description
	
 auto
 	
 1 - 4 for "compact" Aztec code symbols,
5 - 36 for "full-range" Aztec code symbols.
 	
 Selects a Aztec code size, refer to the Aztec code version table for more detailed information.

 	
 -ro-barcode-structured-append

	Default Value	Possible Values	Description
	
 none
 	
 An integer for the total number of barcodes, a string for the id.
 	
 Defines a structured series. The first value sets the total number of barcodes belonging to it, the second value defines the ID of the series.

 	
 -ro-barcode-structured-append-position

	Default Value	Possible Values	Description
	
 auto
 	
 Positive integers.
 	
 Defines the position of this barcode within a structured series.

 Aztec Code Version Table

 	-ro-barcode-size	Symbol Size
	1 	15 x 15
	2 	19 x 19
	3 	23 x 23
	4 	27 x 27
	5 	19 x 19
	6 	23 x 23
	7 	27 x 27
	8 	31 x 31
	9 	37 x 37
	10	41 x 41
	11	45 x 45
	12	49 x 49

 	-ro-barcode-size	Symbol Size
	13	53 x 53
	14	57 x 57
	15	61 x 61
	16	67 x 67
	17	71 x 71
	18	75 x 75
	19	79 x 79
	20	83 x 83
	21	87 x 87
	22	91 x 91
	23	95 x 95
	24	101 x 101

 	-ro-barcode-size	Symbol Size
	25	105 x 105
	26	109 x 109
	27	113 x 113
	28	117 x 117
	29	121 x 121
	30	125 x 125
	31	131 x 131
	32	135 x 135
	33	139 x 139
	34	143 x 143
	35	147 x 147
	36	151 x 151

 Data Matrix

 Data Matrix ECC 200 bar code symbology According to ISO/IEC 16022:2006

 Identifier: data-matrix

 Default Subtype: square

 Allowed Characters: ISO/IEC 8859-1 (Latin-1)

 Supported Data Types: eci, hibc, gs1

 Supported Subtypes	Identifier	Description
	square	A square shaped data matrix.
	rectangle	A rectangular data matrix

 	
 -ro-barcode-reader-initialization

	Default Value	Possible Values	Description
	
 disabled
 	
 enabled, disabled
 	
 Defines whether reader initialization instructions should be added to the barcode.

 	
 -ro-barcode-size

	Default Value	Possible Values	Description
	
 auto
 	
 1 - 30
 	
 Selects a Data Matrix size, refer to the Data Matrix version table for more detailed information.

 	
 -ro-barcode-structured-append

	Default Value	Possible Values	Description
	
 none
 	
 Two integers.
 	
 Defines a structured series. The first value sets the total number of barcodes belonging to it, the second value defines the ID of the series.

 	
 -ro-barcode-structured-append-position

	Default Value	Possible Values	Description
	
 auto
 	
 Positive integers.
 	
 Defines the position of this barcode within a structured series.

 Data Matrix Version Table

 	-ro-barcode-size	Symbol Size
	1 	10 x 10
	2 	12 x 12
	3 	14 x 14
	4 	16 x 16
	5 	18 x 18
	6 	20 x 20
	7 	22 x 22
	8 	24 x 24
	9 	26 x 26
	10	32 x 32

 	-ro-barcode-size	Symbol Size
	11	36 x 36
	12	40 x 40
	13	44 x 44
	14	48 x 48
	15	52 x 52
	16	64 x 64
	17	72 x 72
	18	80 x 80
	19	88 x 88
	20	96 x 96

 	-ro-barcode-size	Symbol Size
	21	104 x 104
	22	120 x 120
	23	132 x 132
	24	144 x 144
	25	8 x 18
	26	8 x 32
	27	12 x 26
	28	12 x 36
	29	16 x 36
	30	16 x 48

 Code One

 Identifier: code-one

 Allowed Characters: ISO 8859-1 (Latin-1)

 Supported Data Types: eci, hibc, gs1

 	
 -ro-barcode-size

	Default Value	Possible Values	Description
	
 auto
 	
 1-10
 	
 Selects a Code One version, refer to the Code One version table for more detailed information.

 Code One Version Table

 	-ro-barcode-size	Version (Size)
	1 	A: 18 x 16
	2 	B: 22 x 22
	3 	C: 32 x 28
	4 	D: 42 x 40
	5 	E: 54 x 52

 	-ro-barcode-size	Version (Size)
	6 	F: 76 x 70
	7 	G: 98 x 104
	8 	H: 134 x 148
	9 	S: ? x 9
	10 	T: ? x 17

 The width of the Code One versions S and T is determined by the amount of encoded data.
 For version S it is either 13, 23 or 33, for version T it is either 19, 35 or 51.

 Grid Matrix

 Grid Matrix bar code symbology according to AIMD014

 Identifier: grid-matrix

 Allowed Characters: ISO/IEC 8859-1 (Latin-1) and GB-2312

 Supported Data Types: eci, hibc

 	
 -ro-barcode-reader-initialization

	Default Value	Possible Values	Description
	
 disabled
 	
 enabled, disabled
 	
 Defines whether reader initialization instructions should be added to the barcode.

 	
 -ro-barcode-ecc-level

	Default Value	Possible Values	Description
	
 auto
 	
 	Value	Error Correction Capacity
	1	~10%
	2	~20%
	3	~30%
	4	~40%
	5	~50%

 	
 Sets the error correction level.

 	
 -ro-barcode-size

	Default Value	Possible Values	Description
	
 auto
 	
 1 - 13
 	
 Selects a Grid Matrix size, refer to the Grid Matrix version table for more detailed information.

 Grid Matrix Version Table

 	-ro-barcode-size	Symbol Size
	1	18 x 18
	2	30 x 30
	3	42 x 42
	4	54 x 54
	5	66 x 66
	6	78 x 78
	7	90 x 90

 	-ro-barcode-size	Symbol Size
	8 	102 x 102
	9 	114 x 114
	10	126 x 126
	11	138 x 138
	12	150 x 150
	13	162 x 162

 Maxicode

 MaxiCode barcode symbology according to ISO 16023:2000

 Identifier: maxicode

 Default Subtype: mode-4

 Allowed Characters: ISO 8859-1 (Latin-1)

 Supported Data Types: eci, hibc

 Supported Subtypes	Identifier	Description
	mode-2	Formatted data containing a structured Carrier Message with a numeric postal code.
	mode-3	Formatted data containing a structured Carrier Message with an alphanumeric postal code.
	mode-4	Unformatted data with Standard Error Correction.
	mode-5	Unformatted data with Enhanced Error Correction.
	mode-6	Used for programming hardware devices.

 	
 -ro-barcode-structured-append

	Default Value	Possible Values	Description
	
 none
 	
 Positive integers.
 	
 Defines a structured series. The first value sets the total number of barcodes belonging to it. Structured Maxicode series do not have an ID.

 	
 -ro-barcode-structured-append-position

	Default Value	Possible Values	Description
	
 auto
 	
 Positive integers.
 	
 Defines the position of this barcode within a structured series.

 	
 -ro-barcode-type

	Default Value	Possible Values	Description
	
 auto
 	
 A string whose characters should comform with the following requirements:
 	1-9 - Postal code data consisting of up to 9 digits (mode 2) or up to 6 alphanumeric characters (mode 3). The remaining characters should be filled with spaces.
	10-12 - Three-digit country code according to ISO-3166.
	13-15 - Three digit service code. This depends on your parcel courier.

 	
 Sets the primary data and should only be used with Maxicode mode 2 or 3.

 Micro QR

 Micro QR Code according to ISO/IEC 18004:2006

 Identifier: microqr

 Allowed Characters: The Latin-1 set and Kanji characters which are members of the Shift-JIS encoding scheme.

 Supported Data Types: eci, hibc

 	
 -ro-barcode-size

	Default Value	Possible Values	Description
	
 auto
 	
 1 - 4, maps to M1 to M4.
 	
 Selects a Micro QR code size.

 	
 -ro-barcode-ecc-level

	Default Value	Possible Values	Description
	
 auto
 	
 L, M, Q
 	
 Sets the error correction level.

 Code 2 of 5

 The Code 2 of 5 family of barcode standards.

 Identifier: code2of5

 Default Subtype: matrix

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 Supported Subtypes	Identifier	Description
	matrix	Standard Code 2 of 5 mode, also known as Code 2 of 5 Matrix.
	industrial	Industrial Code 2 of 5.
	iata	International Air Transport Agency variation of Code 2 of 5.
	data-logic	Code 2 of 5 Data Logic.
	interleaved	Interleaved Code 2 of 5.
	itf14	ITF-14, also known as UPC Shipping Container Symbol or Case Code. Requires a 13-digit numeric input.
	dp-leitcode	Deutsche Post Leitcode. Requires a 13-digit numerical input.
	dp-identcode	Deutsche Post Identcode. Requires an 11-digit numerical input.

 	
 -ro-barcode-type

	Default Value	Possible Values	Description
	
 disabled
 	
 enabled, disabled
 	
 Defines whether a checkdigit should be added, only applicable to Code 2 of 5 interleaved.

 ITF-14 (UPC Shipping Container Symbol or Case Code)

 Identifier: itf14

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 Deutsche Post Leitcode

 Identifier: dp-leitcode

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 Deutsche Post Identcode

 Identifier: dp-identcode

 Allowed Characters: 0-9

 Supported Data Types: eci, hibc

 Nummer der Versandeinheit / Serial Shipping Container Code

 Identifier: nve18 or sscc18

 Allowed Content: 0-9

 Supported Data Types: gs1

 GS1 Composite

 GS1 Composite symbology according to ISO/IEC 24723:2010.

 Identifier: composite

 Consists of a linear and 2 dimensional part. The subtypes refer to the 2D one.

 Default Subtype: cc-a

 Allowed Content: ASCII

 Supported Data Types: gs1

 Supported Subtypes	Identifier	Description
	cc-a	MicroPDF417 symbol variant, encodes up to 56 alphanumeric digits.
	cc-b	MicroPDF417 symbol variant, encodes up to 338 alphanumeric digits.
	cc-c	PDF417 symbol variant, encodes up to 2361 alphanumeric digits.

 	
 -ro-barcode-composite-type

	Default Value	Possible Values	Description
	
 code128
 	
 Behaves like -ro-barcode-type, but is restricted to the following types/subtypes:
 	
 code128

	
 databar

	
 databar stacked

	
 databar omnidirectional-stacked

	
 databar-expanded

	
 databar-expanded stacked

	
 databar-limited

	
 ean-8

	
 upc-a

	
 upc-e

 	
 Defines the barcode type of the linear part of a GS1 Composite barcode.

 	
 -ro-barcode-composite-content

	Default Value	Possible Values	Description
	
 auto
 	
 Depends on the selected barcode type.
 	
 Sets the content to be encoded in the linear part of a GS1 composite barcode.

 Code Samples for Other Languages

 CSS Support

 Default Style Rules

 The element's default styles are described in the User Agent Stylesheet. While most of these styles
 are adapted from the specificationssee https://html.spec.whatwg.org/multipage/rendering.html
 and match the styles of browsers, PDFreactor adds some sets of style rules, for example those related to pagination:

 Special PDFreactor Default Style Rules	Selector	Declarations
	@page	
 size: A4;

 margin: 2cm;

 white-space: pre-line;

 counter-increment: page;

	h1, h2, h3, h4, h5, h6	break-after: avoid;
	@footnote	
 padding-top: 6pt;

 border-top: solid black thin;

 -ro-border-length: 30%;

 margin-top: 6pt;

	::footnote-call	
 counter-increment: footnote 1;

 content: counter(footnote, decimal);

 line-height: 0;

 font-size: smaller;

 vertical-align: super;

	::footnote-marker	
 content: counter(footnote, decimal) " ";

 line-height: 0;

 font-size: smaller;

 vertical-align: super;

	blockquote[type="cite"]	
 padding-inline-start: 1em;

 border-inline-start: solid;

 border-color: blue;

 border-width: thin;

 CSS Attribute Selector

 PDFreactor supports the following CSS selectors which select elements that have certain attributes:

 Supported attribute selectors	Attribute selector	Meaning	CSS Level
	Elem[attr]	An Elem element with a attr attribute.
 	CSS 2.1
	Elem[attr="val"]	An Elem element whose attr attribute value is exactly equal to "val".
 	CSS 2.1
	Elem[attr~="val"]	An Elem element whose attr attribute value is a list of
 whitespace-separated values, one of which is exactly equal to "val".
 	CSS 2.1
	Elem[attr^="val"]	An Elem element whose attr attribute value begins exactly with the string "val".
 	CSS 3
	Elem[attr$="val"]	An Elem element whose attr attribute value ends exactly with the string "val".
 	CSS 3
	Elem[attr*="val"]	An Elem element whose attr attribute value contains the substring "val".
 	CSS 3

 Supported Page Size Formats

 Keywords for the supported A series formats, based on DIN 476/ISO 216, and their corresponding oversize formats	A series	Size [mm]	RA oversizes	Size [mm]	SRA oversizes	Size [mm]
	A0	841 x 1189	RA0	860 x 1220	SRA0	900 x 1280
	A1	594 x 841	RA1	610 x 860	SRA1	640 x 900
	A2	420 x 594	RA2	430 x 610	SRA2	450 x 640
	A3	297 x 420	RA3	305 x 430	SRA3	320 x 450
	A4	210 x 297	RA4	215 x 305	SRA4	225 x 320
	A5	148 x 210	RA5	152 x 215	SRA5	160 x 225
	A6	105 x 148	RA6	107 x 152	SRA6	112 x 160
	A7	74 x 105	RA7	76 x 107	SRA7	80 x 112
	A8	52 x 74	RA8	53 x 76	SRA8	56 x 80
	A9	37 x 52				
	A10	26 x 37				

 CSS Keywords for the supported B series formats	B series	Size [mm]
	B1	707 x 1000
	B2	500 x 707
	B3	353 x 500
	B4	250 x 353
	B5	176 x 250
	B6	125 x 176
	B7	88 x 125
	B8	62 x 88
	B9	44 x 62
	B10	31 x 44

 Keywords for the supported C series formats	C series	Size [mm]
	C1	648 x 917
	C2	458 x 648
	C3	324 x 458
	C4	229 x 324
	C5	162 x 229
	C6	114 x 162
	C7	81 x 114
	C8	57 x 81
	C9	40 x 57
	C10	28 x 40

 Keywords for supported international page formats	Page format	Size [in]
	Letter	8.5 x 11
	Legal	8.5 x 14
	Ledger	11 x 17
	Invoice	5.5 x 8
	Executive	7.25 x 10.5
	Broadsheet	17 x 22

 Supported Hyphenation Languages

 Hyphenation languages (a-f)	ISO 639-1	Language
	af	Afrikaans
	as	Assamese
	bg	Bulgarian
	bn	Bengali, Bangla
	ca	Catalan
	cy	Welsh
	da	Danish
	de	New German
	de-1901	German traditional
	de-CH	German, Switzerland
	el	Greek, Modern
	el_Polyton.hyp	Greek, Polyton
	en	English (US)
	en-GB	English (GB)
	eo	Esperanto
	es	Spanish
	et	Estonian
	eu	Basque
	fi	Finnish
	fr	French
	fur	Friulian

 Hyphenation languages (g-m)	ISO 639-1	Language
	gl	Galician
	grc	Greek, Ancient
	gu	Gujarati
	hi	Hindi
	hr	Croatian
	hsb	Upper Sorbian
	ia	Interlingua
	id	Indonesian (Bahasa Indonesia)
	is	Icelandic
	it	Italian
	ka	Georgian
	kmr	Kurmanji (Northern Kurdish)
	kn	Kannada
	la	Latin
	la	Latin
	la-CL	Latin
	lt	Lithuanian
	ml	Malayalam
	mn	Mongolian
	mr	Marathi
	mul	Multiple languages

 Hyphenation languages (n-z)	ISO 639-1	Language
	nb	Norwegian Bokmål
	nl	Dutch
	nn	Norwegian Nynorsk
	oc	Occitan
	or	Oriya
	pa	Panjabi
	pl	Polish
	pms	Piemontese
	pt	Portuguese
	rm	Romansh
	ro	Romanian
	ru	Russian
	sa	Sanskrit
	sl	Slovenian
	sr-Cyrl	Serbian, Cyrillic
	sr-Latn	Serbian, Latin
	sv	Swedish
	ta	Tamil
	te	Telugu
	th	Thai
	tk	Turkmen
	tr	Turkish
	uk	Ukrainian

 Supported length units

 Absolute length units	Unit	Description
	mm	millimeters
	cm	centimeters
	q	quarter-millimeters
	in	inches
	pt	points
	px	pixels
	pc	pica

 Proprietary length units	Unit	Description
	-ro-pw	Equal to 1% of the width of the first page, including its margins.
	-ro-ph	Equal to 1% of the height of the first page, including its margins.
	-ro-pmin	Equal to the smaller of '-ro-pw' and '-ro-ph'.
	-ro-pmax	Equal to the larger of '-ro-pw' and '-ro-ph'.
	-ro-bw	Equal to 1% of the width of the page bleed box of the first page.
	-ro-bh	Equal to 1% of the height of the page bleed box of the first page.
	-ro-bmin	Equal to the smaller of '-ro-bw' and '-ro-bh'.
	-ro-bmax	Equal to the larger of '-ro-bw' and '-ro-bh'.

 Relative length units	Unit	Description
	%	percent
	em	Relative to the font size of the element.
	rem	Relative to the font size of the root element.
	ex	Equal to the used x-height of the first available font.
	ch	Equal to the width of the "0" glyph in the font of the element.
	vw	Equal to 1% of the width of the content area of the first page.
	vh	Equal to 1% of the height of the content area of the first page.
	vmin	Equal to the smaller of 'vw' and 'vh'.
	vmax	Equal to the larger of 'vw' and 'vh'.
	-ro-cap	Equal the capital letter height of the font.
	-ro-ic	Equal to the width of the glyph "水" (U+6C34) in the font of the element.
	-ro-lh	Equal to the line height of the element.
	-ro-rlh	Equal to the line height of the root element.

 CSS Color Keywords

 Supported Color Keywords	Color name	Color	hex RGB	Decimal
	aliceblue		#F0F8FF	240,248,255
	antiquewhite		#FAEBD7	250,235,215
	aqua		#00FFFF	0,255,255
	aquamarine		#7FFFD4	127,255,212
	azure		#F0FFFF	240,255,255
	beige		#F5F5DC	245,245,220
	bisque		#FFE4C4	255,228,196
	black		#000000	0,0,0
	blanchedalmond		#FFEBCD	255,235,205
	blue		#0000FF	0,0,255
	blueviolet		#8A2BE2	138,43,226
	brown		#A52A2A	165,42,42
	burlywood		#DEB887	222,184,135
	cadetblue		#5F9EA0	95,158,160
	chartreuse		#7FFF00	127,255,0
	chocolate		#D2691E	210,105,30
	coral		#FF7F50	255,127,80
	cornflowerblue		#6495ED	100,149,237
	cornsilk		#FFF8DC	255,248,220
	crimson		#DC143C	220,20,60
	cyan		#00FFFF	0,255,255
	darkblue		#00008B	0,0,139
	darkcyan		#008B8B	0,139,139
	darkgoldenrod		#B8860B	184,134,11
	darkgray/darkgrey		#A9A9A9	169,169,169
	darkgreen		#006400	0,100,0
	darkkhaki		#BDB76B	189,183,107
	darkmagenta		#8B008B	139,0,139
	darkolivegreen		#556B2F	85,107,47
	darkorange		#FF8C00	255,140,0
	darkorchid		#9932CC	153,50,204
	darkred		#8B0000	139,0,0
	darksalmon		#E9967A	233,150,122
	darkseagreen		#8FBC8F	143,188,143
	darkslateblue		#483D8B	72,61,139
	darkslategray/darkslategrey		#2F4F4F	47,79,79
	darkturquoise		#00CED1	0,206,209
	darkviolet		#9400D3	148,0,211
	deeppink		#FF1493	255,20,147
	deepskyblue		#00BFFF	0,191,255
	dimgray/dimgrey		#696969	105,105,105
	dodgerblue		#1E90FF	30,144,255
	firebrick		#B22222	178,34,34
	floralwhite		#FFFAF0	255,250,240
	forestgreen		#228B22	34,139,34
	fuchsia		#FF00FF	255,0,255
	gainsboro		#DCDCDC	220,220,220
	ghostwhite		#F8F8FF	248,248,255
	gold		#FFD700	255,215,0
	goldenrod		#DAA520	218,165,32
	gray/grey		#808080	128,128,128
	green		#008000	0,128,0
	greenyellow		#ADFF2F	173,255,47
	honeydew		#F0FFF0	240,255,240
	hotpink		#FF69B4	255,105,180
	indianred		#CD5C5C	205,92,92
	indigo		#4B0082	75,0,130
	ivory		#FFFFF0	255,255,240
	khaki		#F0E68C	240,230,140
	lavender		#E6E6FA	230,230,250
	lavenderblush		#FFF0F5	255,240,245
	lawngreen		#7CFC00	124,252,0
	lemonchiffon		#FFFACD	255,250,205
	lightblue		#ADD8E6	173,216,230
	lightcoral		#F08080	240,128,128
	lightcyan		#E0FFFF	224,255,255
	lightgoldenrodyellow		#FAFAD2	250,250,210
	lightgray/lightgrey		#D3D3D3	211,211,211
	lightgreen		#90EE90	144,238,144
	lightpink		#FFB6C1	255,182,193
	lightsalmon		#FFA07A	255,160,122
	lightseagreen		#20B2AA	32,178,170
	lightskyblue		#87CEFA	135,206,250
	lightslategray/lightslategrey		#778899	119,136,153
	lightsteelblue		#B0C4DE	176,196,222
	lightyellow		#FFFFE0	255,255,224
	lime		#00FF00	0,255,0
	limegreen		#32CD32	50,205,50
	linen		#FAF0E6	250,240,230
	magenta		#FF00FF	255,0,255
	maroon		#800000	128,0,0
	mediumaquamarine		#66CDAA	102,205,170
	mediumblue		#0000CD	0,0,205
	mediumorchid		#BA55D3	186,85,211
	mediumpurple		#9370DB	147,112,219
	mediumseagreen		#3CB371	60,179,113
	mediumslateblue		#7B68EE	123,104,238
	mediumspringgreen		#00FA9A	0,250,154
	mediumturquoise		#48D1CC	72,209,204
	mediumvioletred		#C71585	199,21,133
	midnightblue		#191970	25,25,112
	mintcream		#F5FFFA	245,255,250
	mistyrose		#FFE4E1	255,228,225
	moccasin		#FFE4B5	255,228,181
	navajowhite		#FFDEAD	255,222,173
	navy		#000080	0,0,128
	oldlace		#FDF5E6	253,245,230
	olive		#808000	128,128,0
	olivedrab		#6B8E23	107,142,35
	orange		#FFA500	255,165,0
	orangered		#FF4500	255,69,0
	orchid		#DA70D6	218,112,214
	palegoldenrod		#EEE8AA	238,232,170
	palegreen		#98FB98	152,251,152
	paleturquoise		#AFEEEE	175,238,238
	palevioletred		#DB7093	219,112,147
	papayawhip		#FFEFD5	255,239,213
	peachpuff		#FFDAB9	255,218,185
	peru		#CD853F	205,133,63
	pink		#FFC0CB	255,192,203
	plum		#DDA0DD	221,160,221
	powderblue		#B0E0E6	176,224,230
	purple		#800080	128,0,128
	rebeccapurple		#663399	102,51,153
	red		#FF0000	255,0,0
	rosybrown		#BC8F8F	188,143,143
	royalblue		#4169E1	65,105,225
	saddlebrown		#8B4513	139,69,19
	salmon		#FA8072	250,128,114
	sandybrown		#F4A460	244,164,96
	seagreen		#2E8B57	46,139,87
	seashell		#FFF5EE	255,245,238
	sienna		#A0522D	160,82,45
	silver		#C0C0C0	192,192,192
	skyblue		#87CEEB	135,206,235
	slateblue		#6A5ACD	106,90,205
	slategray/slategrey		#708090	112,128,144
	snow		#FFFAFA	255,250,250
	springgreen		#00FF7F	0,255,127
	steelblue		#4682B4	70,130,180
	tan		#D2B48C	210,180,140
	teal		#008080	0,128,128
	thistle		#D8BFD8	216,191,216
	tomato		#FF6347	255,99,71
	turquoise		#40E0D0	64,224,208
	violet		#EE82EE	238,130,238
	wheat		#F5DEB3	245,222,179
	white		#FFFFFF	255,255,255
	whitesmoke		#F5F5F5	245,245,245
	yellow		#FFFF00	255,255,0
	yellowgreen		#9ACD32	154,205,50
	-ro-comment-highlight		#FFFF0B	255,255,11
	-ro-comment-underline		#23FF06	35,255,6
	-ro-comment-strikeout		#FB0007	251,0,7

 Counter and Ordered List Style Types

 Supported counter and ordered list style types	Counter style name	1	12	123	1234
	decimal	
 	

 	
 	

 	
 	

 	
 	

	decimal-leading-zero	
 	

 	
 	

 	
 	

 	
 	

	super-decimal	
 	

 	
 	

 	
 	

 	
 	

	upper-hexadecimal	
 	

 	
 	

 	
 	

 	
 	

	lower-hexadecimal	
 	

 	
 	

 	
 	

 	
 	

	octal	
 	

 	
 	

 	
 	

 	
 	

	binary	
 	

 	
 	

 	
 	

 	
 	

	upper-roman	
 	

 	
 	

 	
 	

 	
 	

	lower-roman	
 	

 	
 	

 	
 	

 	
 	

	upper-alpha	
 	

 	
 	

 	
 	

 	
 	

	lower-alpha	
 	

 	
 	

 	
 	

 	
 	

	arabic-indic	
 	

 	
 	

 	
 	

 	
 	

	armenian	
 	

 	
 	

 	
 	

 	
 	

	upper-armenian	
 	

 	
 	

 	
 	

 	
 	

	lower-armenian	
 	

 	
 	

 	
 	

 	
 	

	bengali	
 	

 	
 	

 	
 	

 	
 	

	cambodian	
 	

 	
 	

 	
 	

 	
 	

	devanagari	
 	

 	
 	

 	
 	

 	
 	

	georgian	
 	

 	
 	

 	
 	

 	
 	

	upper-greek	
 	

 	
 	

 	
 	

 	
 	

	lower-greek	
 	

 	
 	

 	
 	

 	
 	

	gujarati	
 	

 	
 	

 	
 	

 	
 	

	gurmukhi	
 	

 	
 	

 	
 	

 	
 	

	hiragana	
 	

 	
 	

 	
 	

 	
 	

	hiragana-iroha	
 	

 	
 	

 	
 	

 	
 	

	japanese-formal	
 	

 	
 	

 	
 	

 	
 	

	japanese-informal	
 	

 	
 	

 	
 	

 	
 	

	kannada	
 	

 	
 	

 	
 	

 	
 	

	katakana	
 	

 	
 	

 	
 	

 	
 	

	katakana-iroha	
 	

 	
 	

 	
 	

 	
 	

	khmer	
 	

 	
 	

 	
 	

 	
 	

	lao	
 	

 	
 	

 	
 	

 	
 	

	upper-latin	
 	

 	
 	

 	
 	

 	
 	

	lower-latin	
 	

 	
 	

 	
 	

 	
 	

	malayalam	
 	

 	
 	

 	
 	

 	
 	

	mongolian	
 	

 	
 	

 	
 	

 	
 	

	myanmar	
 	

 	
 	

 	
 	

 	
 	

	oriya	
 	

 	
 	

 	
 	

 	
 	

	persian	
 	

 	
 	

 	
 	

 	
 	

	simp-chinese-formal	
 	

 	
 	

 	
 	

 	
 	

	simp-chinese-informal	
 	

 	
 	

 	
 	

 	
 	

	telugu	
 	

 	
 	

 	
 	

 	
 	

	thai	
 	

 	
 	

 	
 	

 	
 	

	tibetan	
 	

 	
 	

 	
 	

 	
 	

	urdu	
 	

 	
 	

 	
 	

 	
 	

	-ro-footnote	
 	

 	
 	

 	
 	

 	
 	

	-ro-spelled-out-en	
 	

 	
 	

 	
 	

 	
 	

	-ro-spelled-out-en-ordinal	
 	

 	
 	

 	
 	

 	
 	

	-ro-spelled-out-de	
 	

 	
 	

 	
 	

 	
 	

	-ro-spelled-out-fr	
 	

 	
 	

 	
 	

 	
 	

 Supported Values for Transliteration

 The following lists all valid input/output value pairs for the transliterate option of ,
 according to the underlying ICU4J implementation.

"Accents" "Any"
"am" "am_FONIPA"
"am" "am_Latn/BGN"
"am" "ar"
"am" "chr"
"am" "fa"
"am_FONIPA" "am"
"Amharic" "Latin/BGN"
"Any" "Accents"
"Any" "am"
"Any" "am_FONIPA"
"Any" "am_Latn/BGN"
"Any" "Any"
"Any" "Any/C"
"Any" "Any/Java"
"Any" "Any/Perl"
"Any" "Any/Unicode"
"Any" "Any/XML"
"Any" "Any/XML10"
"Any" "ar"
"Any" "ar_Latn/BGN"
"Any" "Arab"
"Any" "Arabic"
"Any" "Armenian"
"Any" "Armn"
"Any" "az/BGN"
"Any" "be_Latn/BGN"
"Any" "Beng"
"Any" "Bengali"
"Any" "bg_Latn/BGN"
"Any" "blt_FONIPA"
"Any" "Bopo"
"Any" "Bopomofo"
"Any" "CanadianAboriginal"
"Any" "Cans"
"Any" "CaseFold"
"Any" "ch_FONIPA"
"Any" "chr"
"Any" "chr_FONIPA"
"Any" "cs_FONIPA"
"Any" "cy_FONIPA"
"Any" "Cyrillic"
"Any" "Cyrl"
"Any" "Deva"
"Any" "Devanagari"
"Any" "dsb_FONIPA"
"Any" "dv_Latn/BGN"
"Any" "el_Latn/BGN"
"Any" "eo_FONIPA"
"Any" "es_419_FONIPA"
"Any" "es_FONIPA"
"Any" "Ethi"
"Any" "Ethiopic"
"Any" "fa"
"Any" "fa_FONIPA"
"Any" "fa_Latn/BGN"
"Any" "FCC"
"Any" "FCD"
"Any" "Geor"
"Any" "Georgian"
"Any" "Greek"
"Any" "Greek/UNGEGN"
"Any" "Grek"
"Any" "Grek/UNGEGN"
"Any" "Gujarati"
"Any" "Gujr"
"Any" "Gurmukhi"
"Any" "Guru"
"Any" "ha_NE"
"Any" "Hang"
"Any" "Hangul"
"Any" "Hans"
"Any" "Hant"
"Any" "he_Latn/BGN"
"Any" "Hebr"
"Any" "Hebrew"
"Any" "Hex"
"Any" "Hex/C"
"Any" "Hex/Java"
"Any" "Hex/Perl"
"Any" "Hex/Plain"
"Any" "Hex/Unicode"
"Any" "Hex/XML"
"Any" "Hex/XML10"
"Any" "Hira"
"Any" "Hiragana"
"Any" "hy_AREVMDA_FONIPA"
"Any" "hy_FONIPA"
"Any" "hy_Latn/BGN"
"Any" "ia_FONIPA"
"Any" "ja"
"Any" "ja_Latn/BGN"
"Any" "Jamo"
"Any" "ka_Latn/BGN"
"Any" "ka_Latn/BGN_1981"
"Any" "Kana"
"Any" "Kannada"
"Any" "Katakana"
"Any" "kk_FONIPA"
"Any" "kk_Latn/BGN"
"Any" "Knda"
"Any" "ko"
"Any" "ko_Latn/BGN"
"Any" "ky_FONIPA"
"Any" "ky_Latn/BGN"
"Any" "la_FONIPA"
"Any" "Latin"
"Any" "Latin/BGN"
"Any" "Latin/Names"
"Any" "Latin/UNGEGN"
"Any" "Latn"
"Any" "Latn/UNGEGN"
"Any" "Lower"
"Any" "Malayalam"
"Any" "mk_Latn/BGN"
"Any" "Mlym"
"Any" "mn_Latn/BGN"
"Any" "mn_Latn/MNS"
"Any" "my"
"Any" "my_FONIPA"
"Any" "my_Latn"
"Any" "Name"
"Any" "NFC"
"Any" "NFD"
"Any" "NFKC"
"Any" "NFKD"
"Any" "Null"
"Any" "nv_FONIPA"
"Any" "Oriya"
"Any" "Orya"
"Any" "pl_FONIPA"
"Any" "ps_Latn/BGN"
"Any" "Publishing"
"Any" "Remove"
"Any" "rm_FONIPA_SURSILV"
"Any" "ro_FONIPA"
"Any" "ru"
"Any" "ru/BGN"
"Any" "ru_Latn/BGN"
"Any" "sat_FONIPA"
"Any" "si_FONIPA"
"Any" "si_Latn"
"Any" "sk_FONIPA"
"Any" "sr_Latn/BGN"
"Any" "Syrc"
"Any" "Syriac"
"Any" "ta_FONIPA"
"Any" "Tamil"
"Any" "Taml"
"Any" "Telu"
"Any" "Telugu"
"Any" "Thaa"
"Any" "Thaana"
"Any" "Thai"
"Any" "Title"
"Any" "tk/BGN"
"Any" "ug_FONIPA"
"Any" "uk_Latn/BGN"
"Any" "und_FONIPA"
"Any" "und_FONXSAMP"
"Any" "Upper"
"Any" "ur"
"Any" "uz/BGN"
"Any" "uz_Cyrl"
"Any" "uz_Latn"
"Any" "vec_FONIPA"
"Any" "xh_FONIPA"
"Any" "yo_BJ"
"Any" "zh"
"Any" "zu_FONIPA"
"ar" "ar_Latn/BGN"
"Arab" "Latn"
"Arabic" "Latin"
"Arabic" "Latin/BGN"
"Armenian" "Latin"
"Armenian" "Latin/BGN"
"Armn" "Latn"
"ASCII" "Latin"
"az" "Lower"
"az" "Title"
"az" "Upper"
"az_Cyrl" "az/BGN"
"Azerbaijani" "Latin/BGN"
"be" "be_Latn/BGN"
"Belarusian" "Latin/BGN"
"Beng" "Arab"
"Beng" "Deva"
"Beng" "Gujr"
"Beng" "Guru"
"Beng" "Knda"
"Beng" "Latn"
"Beng" "Mlym"
"Beng" "Orya"
"Beng" "Taml"
"Beng" "Telu"
"Beng" "ur"
"Bengali" "Arabic"
"Bengali" "Devanagari"
"Bengali" "Gujarati"
"Bengali" "Gurmukhi"
"Bengali" "Kannada"
"Bengali" "Latin"
"Bengali" "Malayalam"
"Bengali" "Oriya"
"Bengali" "Tamil"
"Bengali" "Telugu"
"bg" "bg_Latn/BGN"
"blt" "blt_FONIPA"
"Bopo" "Latn"
"Bopomofo" "Latin"
"Bulgarian" "Latin/BGN"
"Burmese" "Latin"
"CanadianAboriginal" "Latin"
"Cans" "Latn"
"ch" "am"
"ch" "ar"
"ch" "ch_FONIPA"
"ch" "chr"
"ch" "fa"
"chr" "chr_FONIPA"
"cs" "am"
"cs" "ar"
"cs" "chr"
"cs" "cs_FONIPA"
"cs" "fa"
"cs" "ja"
"cs" "ko"
"cs_FONIPA" "ja"
"cs_FONIPA" "ko"
"cy" "cy_FONIPA"
"Cyrillic" "Latin"
"Cyrl" "Latn"
"de" "ASCII"
"Deva" "Arab"
"Deva" "Beng"
"Deva" "Gujr"
"Deva" "Guru"
"Deva" "Knda"
"Deva" "Latn"
"Deva" "Mlym"
"Deva" "Orya"
"Deva" "Taml"
"Deva" "Telu"
"Deva" "ur"
"Devanagari" "Arabic"
"Devanagari" "Bengali"
"Devanagari" "Gujarati"
"Devanagari" "Gurmukhi"
"Devanagari" "Kannada"
"Devanagari" "Latin"
"Devanagari" "Malayalam"
"Devanagari" "Oriya"
"Devanagari" "Tamil"
"Devanagari" "Telugu"
"Digit" "Tone"
"dsb" "dsb_FONIPA"
"dv" "dv_Latn/BGN"
"el" "el_Latn/BGN"
"el" "Lower"
"el" "Title"
"el" "Upper"
"eo" "am"
"eo" "ar"
"eo" "chr"
"eo" "eo_FONIPA"
"eo" "fa"
"es" "am"
"es" "ar"
"es" "chr"
"es" "es_FONIPA"
"es" "fa"
"es" "ja"
"es" "zh"
"es_419" "am"
"es_419" "ar"
"es_419" "chr"
"es_419" "fa"
"es_419" "ja"
"es_419" "zh"
"es_FONIPA" "am"
"es_FONIPA" "es_419_FONIPA"
"es_FONIPA" "ja"
"es_FONIPA" "zh"
"Ethi" "Latn"
"Ethiopic" "Latin"
"fa" "fa_FONIPA"
"fa" "fa_Latn/BGN"
"Fullwidth" "Halfwidth"
"Geor" "Latn"
"Georgian" "Latin"
"Georgian" "Latin/BGN"
"Greek" "Latin"
"Greek" "Latin/BGN"
"Greek" "Latin/UNGEGN"
"Grek" "Latn"
"Grek" "Latn/UNGEGN"
"Gujarati" "Arabic"
"Gujarati" "Bengali"
"Gujarati" "Devanagari"
"Gujarati" "Gurmukhi"
"Gujarati" "Kannada"
"Gujarati" "Latin"
"Gujarati" "Malayalam"
"Gujarati" "Oriya"
"Gujarati" "Tamil"
"Gujarati" "Telugu"
"Gujr" "Arab"
"Gujr" "Beng"
"Gujr" "Deva"
"Gujr" "Guru"
"Gujr" "Knda"
"Gujr" "Latn"
"Gujr" "Mlym"
"Gujr" "Orya"
"Gujr" "Taml"
"Gujr" "Telu"
"Gujr" "ur"
"Gurmukhi" "Arabic"
"Gurmukhi" "Bengali"
"Gurmukhi" "Devanagari"
"Gurmukhi" "Gujarati"
"Gurmukhi" "Kannada"
"Gurmukhi" "Latin"
"Gurmukhi" "Malayalam"
"Gurmukhi" "Oriya"
"Gurmukhi" "Tamil"
"Gurmukhi" "Telugu"
"Guru" "Arab"
"Guru" "Beng"
"Guru" "Deva"
"Guru" "Gujr"
"Guru" "Knda"
"Guru" "Latn"
"Guru" "Mlym"
"Guru" "Orya"
"Guru" "Taml"
"Guru" "Telu"
"Guru" "ur"
"ha" "ha_NE"
"Halfwidth" "Fullwidth"
"Han" "Latin"
"Han" "Latin/Names"
"Hang" "Latn"
"Hangul" "Latin"
"Hani" "Latn"
"Hans" "Hant"
"Hant" "Hans"
"he" "he_Latn/BGN"
"Hebr" "Latn"
"Hebrew" "Latin"
"Hebrew" "Latin/BGN"
"Hex" "Any"
"Hex" "Any/C"
"Hex" "Any/Java"
"Hex" "Any/Perl"
"Hex" "Any/Unicode"
"Hex" "Any/XML"
"Hex" "Any/XML10"
"Hira" "Kana"
"Hira" "Latn"
"Hiragana" "Katakana"
"Hiragana" "Latin"
"hy" "am"
"hy" "ar"
"hy" "chr"
"hy" "fa"
"hy" "hy_FONIPA"
"hy" "hy_Latn/BGN"
"hy_AREVMDA" "am"
"hy_AREVMDA" "ar"
"hy_AREVMDA" "chr"
"hy_AREVMDA" "fa"
"hy_AREVMDA" "hy_AREVMDA_FONIPA"
"ia" "am"
"ia" "ar"
"ia" "chr"
"ia" "fa"
"ia" "ia_FONIPA"
"IPA" "XSampa"
"it" "am"
"it" "ja"
"ja_Hrkt" "ja_Latn/BGN"
"ja_Latn" "ko"
"ja_Latn" "ru"
"Jamo" "Latin"
"Jamo" "Latn"
"ka" "ka_Latn/BGN"
"ka" "ka_Latn/BGN_1981"
"Kana" "Hira"
"Kana" "Latn"
"Kannada" "Arabic"
"Kannada" "Bengali"
"Kannada" "Devanagari"
"Kannada" "Gujarati"
"Kannada" "Gurmukhi"
"Kannada" "Latin"
"Kannada" "Malayalam"
"Kannada" "Oriya"
"Kannada" "Tamil"
"Kannada" "Telugu"
"Katakana" "Hiragana"
"Katakana" "Latin"
"Katakana" "Latin/BGN"
"Kazakh" "Latin/BGN"
"Kirghiz" "Latin/BGN"
"kk" "am"
"kk" "ar"
"kk" "chr"
"kk" "fa"
"kk" "kk_FONIPA"
"kk" "kk_Latn/BGN"
"Knda" "Arab"
"Knda" "Beng"
"Knda" "Deva"
"Knda" "Gujr"
"Knda" "Guru"
"Knda" "Latn"
"Knda" "Mlym"
"Knda" "Orya"
"Knda" "Taml"
"Knda" "Telu"
"Knda" "ur"
"ko" "ko_Latn/BGN"
"Korean" "Latin/BGN"
"ky" "am"
"ky" "ar"
"ky" "chr"
"ky" "fa"
"ky" "ky_FONIPA"
"ky" "ky_Latn/BGN"
"la" "la_FONIPA"
"Latin" "Arabic"
"Latin" "Armenian"
"Latin" "ASCII"
"Latin" "Bengali"
"Latin" "Bopomofo"
"Latin" "CanadianAboriginal"
"Latin" "Cyrillic"
"Latin" "Devanagari"
"Latin" "Ethiopic"
"Latin" "Georgian"
"Latin" "Greek"
"Latin" "Greek/UNGEGN"
"Latin" "Gujarati"
"Latin" "Gurmukhi"
"Latin" "Hangul"
"Latin" "Hebrew"
"Latin" "Hiragana"
"Latin" "Jamo"
"Latin" "Kannada"
"Latin" "Katakana"
"Latin" "Malayalam"
"Latin" "NumericPinyin"
"Latin" "Oriya"
"Latin" "Russian/BGN"
"Latin" "Syriac"
"Latin" "Tamil"
"Latin" "Telugu"
"Latin" "Thaana"
"Latin" "Thai"
"Latn" "Arab"
"Latn" "Armn"
"Latn" "Beng"
"Latn" "Bopo"
"Latn" "Cans"
"Latn" "Cyrl"
"Latn" "Deva"
"Latn" "Ethi"
"Latn" "Geor"
"Latn" "Grek"
"Latn" "Grek/UNGEGN"
"Latn" "Gujr"
"Latn" "Guru"
"Latn" "Hang"
"Latn" "Hebr"
"Latn" "Hira"
"Latn" "Jamo"
"Latn" "Kana"
"Latn" "Knda"
"Latn" "Mlym"
"Latn" "Orya"
"Latn" "Syrc"
"Latn" "Taml"
"Latn" "Telu"
"Latn" "Thaa"
"Latn" "Thai"
"lt" "Lower"
"lt" "Title"
"lt" "Upper"
"Macedonian" "Latin/BGN"
"Malayalam" "Arabic"
"Malayalam" "Bengali"
"Malayalam" "Devanagari"
"Malayalam" "Gujarati"
"Malayalam" "Gurmukhi"
"Malayalam" "Kannada"
"Malayalam" "Latin"
"Malayalam" "Oriya"
"Malayalam" "Tamil"
"Malayalam" "Telugu"
"Maldivian" "Latin/BGN"
"mk" "mk_Latn/BGN"
"Mlym" "Arab"
"Mlym" "Beng"
"Mlym" "Deva"
"Mlym" "Gujr"
"Mlym" "Guru"
"Mlym" "Knda"
"Mlym" "Latn"
"Mlym" "Orya"
"Mlym" "Taml"
"Mlym" "Telu"
"Mlym" "ur"
"mn" "mn_Latn/BGN"
"mn" "mn_Latn/MNS"
"Mongolian" "Latin/BGN"
"my" "am"
"my" "ar"
"my" "chr"
"my" "fa"
"my" "my_FONIPA"
"my" "my_Latn"
"my" "Zawgyi"
"Myanmar" "Latin"
"Name" "Any"
"nl" "Title"
"NumericPinyin" "Latin"
"NumericPinyin" "Pinyin"
"nv" "nv_FONIPA"
"Oriya" "Arabic"
"Oriya" "Bengali"
"Oriya" "Devanagari"
"Oriya" "Gujarati"
"Oriya" "Gurmukhi"
"Oriya" "Kannada"
"Oriya" "Latin"
"Oriya" "Malayalam"
"Oriya" "Tamil"
"Oriya" "Telugu"
"Orya" "Arab"
"Orya" "Beng"
"Orya" "Deva"
"Orya" "Gujr"
"Orya" "Guru"
"Orya" "Knda"
"Orya" "Latn"
"Orya" "Mlym"
"Orya" "Taml"
"Orya" "Telu"
"Orya" "ur"
"Pashto" "Latin/BGN"
"Persian" "Latin/BGN"
"Pinyin" "NumericPinyin"
"pl" "am"
"pl" "ar"
"pl" "chr"
"pl" "fa"
"pl" "ja"
"pl" "pl_FONIPA"
"pl_FONIPA" "ja"
"ps" "ps_Latn/BGN"
"Publishing" "Any"
"rm_SURSILV" "am"
"rm_SURSILV" "ar"
"rm_SURSILV" "chr"
"rm_SURSILV" "fa"
"rm_SURSILV" "rm_FONIPA_SURSILV"
"ro" "am"
"ro" "ar"
"ro" "chr"
"ro" "fa"
"ro" "ja"
"ro" "ro_FONIPA"
"ro_FONIPA" "ja"
"ru" "ja"
"ru" "ru_Latn/BGN"
"ru" "zh"
"ru_Latn" "ru/BGN"
"Russian" "Latin/BGN"
"sat" "am"
"sat" "ar"
"sat" "chr"
"sat" "fa"
"sat_Olck" "sat_FONIPA"
"Serbian" "Latin/BGN"
"si" "am"
"si" "ar"
"si" "chr"
"si" "fa"
"si" "si_FONIPA"
"si" "si_Latn"
"Simplified" "Traditional"
"sk" "am"
"sk" "ar"
"sk" "chr"
"sk" "fa"
"sk" "ja"
"sk" "sk_FONIPA"
"sk_FONIPA" "ja"
"sr" "sr_Latn/BGN"
"Syrc" "Latn"
"Syriac" "Latin"
"ta" "ta_FONIPA"
"Tamil" "Arabic"
"Tamil" "Bengali"
"Tamil" "Devanagari"
"Tamil" "Gujarati"
"Tamil" "Gurmukhi"
"Tamil" "Kannada"
"Tamil" "Latin"
"Tamil" "Malayalam"
"Tamil" "Oriya"
"Tamil" "Telugu"
"Taml" "Arab"
"Taml" "Beng"
"Taml" "Deva"
"Taml" "Gujr"
"Taml" "Guru"
"Taml" "Knda"
"Taml" "Latn"
"Taml" "Mlym"
"Taml" "Orya"
"Taml" "Telu"
"Taml" "ur"
"Telu" "Arab"
"Telu" "Beng"
"Telu" "Deva"
"Telu" "Gujr"
"Telu" "Guru"
"Telu" "Knda"
"Telu" "Latn"
"Telu" "Mlym"
"Telu" "Orya"
"Telu" "Taml"
"Telu" "ur"
"Telugu" "Arabic"
"Telugu" "Bengali"
"Telugu" "Devanagari"
"Telugu" "Gujarati"
"Telugu" "Gurmukhi"
"Telugu" "Kannada"
"Telugu" "Latin"
"Telugu" "Malayalam"
"Telugu" "Oriya"
"Telugu" "Tamil"
"Thaa" "Latn"
"Thaana" "Latin"
"Thai" "Latin"
"Thai" "Latn"
"tk_Cyrl" "tk/BGN"
"tlh" "am"
"tlh" "ar"
"tlh" "chr"
"tlh" "fa"
"tlh" "tlh_FONIPA"
"Tone" "Digit"
"tr" "Lower"
"tr" "Title"
"tr" "Upper"
"Traditional" "Simplified"
"Turkmen" "Latin/BGN"
"ug" "ug_FONIPA"
"uk" "uk_Latn/BGN"
"Ukrainian" "Latin/BGN"
"und_FONIPA" "ar"
"und_FONIPA" "chr"
"und_FONIPA" "fa"
"und_FONIPA" "und_FONXSAMP"
"und_FONXSAMP" "und_FONIPA"
"uz_Cyrl" "uz/BGN"
"uz_Cyrl" "uz_Latn"
"uz_Latn" "uz_Cyrl"
"Uzbek" "Latin/BGN"
"vec" "vec_FONIPA"
"xh" "am"
"xh" "ar"
"xh" "chr"
"xh" "fa"
"xh" "xh_FONIPA"
"XSampa" "IPA"
"yo" "yo_BJ"
"Zawgyi" "my"
"zh_Latn_PINYIN" "ru"
"zu" "am"
"zu" "ar"
"zu" "chr"
"zu" "fa"
"zu" "zu_FONIPA"

 CSS Documentation

 PDFreactor supports the following CSS properties and functions.

 Properties

 additive-symbols

 The additive-symbols descriptor lets you specify symbols when the value of a counter system descriptor is additive.

 	Value:	[<integer> && [<string> | <identifier>]]#
	Initial:	0 ""
	Applies To:	@counter-style
	Inherited:	No

 MDN documentation:

 additive-symbols

 -ro-align-content

 This property has been deprecated. Use the unprefixed version 'align-content' instead. Note: Earlier versions of this property allowed a value of 'auto'. This has been replaced with 'normal'.

 	Value:	normal | start | center | end
	Initial:	normal
	Applies To:	block-level elements
	Inherited:	No

 Deprecated!

 Use align-content instead.

 align-content

 Sets how the space of a box is distributed among its content items along the cross-axis of a flex container or in block-direction for block containers. Note that some values only work for flex containers or block containers.

 	Value:	normal | [first | last]? baseline | stretch | space-between | space-around | space-evenly | [safe | unsafe]? [start | center | end | flex-start | flex-end]
	Initial:	normal
	Applies To:	block containers, flex containers and grid containers
	Inherited:	No

 MDN documentation:

 align-content

 align-items

 This property specifies the default align-self for all of the child boxes participating in this box’s formatting context.

 	Value:	normal | stretch | [first | last]? baseline | [safe | unsafe]? [center | start | end | self-start | self-end | flex-start | flex-end]
	Initial:	normal
	Inherited:	No

 MDN documentation:

 align-items

 See also:

 align-self

 align-self

 Aligns the box within its containing block along the block/column/cross axis of the alignment container. This property can override the behavior that was set for them via their parent's 'align-items' property.

 	Value:	auto | normal | stretch | [first | last]? baseline | [safe | unsafe]? [center | start | end | self-start | self-end | flex-start | flex-end]
	Initial:	auto
	Applies To:	flex items, grid items and absolutely-positioned boxes
	Inherited:	No

 MDN documentation:

 align-self

 See also:

 align-items

 all

 The all property is a shorthand that resets all CSS properties except 'direction' and 'unicode-bidi'. It does not reset custom properties or prefixed properties.

 	Value:	initial | inherit | unset
	Initial:	
	Inherited:	No

 MDN documentation:

 all

 -ro-alt-text

 The property -ro-alt-text is used to specify an alternative description for an element for use in PDF tags.

 	Value:	auto | none | <string>
	Initial:	auto
	Inherited:	No

 	
 auto

	
 The alternate text is determined from the document, if possible.

	
 none

	
 The element receives no alternate text.

	
 <string>

	
 Specific alternate text for the element.

 More information:

 -ro-anchor

 This property allows to define an anchor via style.
 Note: an element defined as an anchor automatically also is assigned a PDF ID ("named destination") equal to the given identifier.

 	Value:	none | <string>
	Initial:	none
	Inherited:	No

 	
 none

	
 The element is not an anchor.

	
 <string>

	
 The element is an anchor with the given name.

 More information:

 -ro-art-size

 Specifies the size of the ArtBox, one of the PDF page boxes.

 	Value:	none | <length>{1,2} | [<page-size> || [portrait | landscape]] | media | trim | crop
	Initial:	none
	Applies To:	page context
	Inherited:	No

 	
 none

	
 The element does not specify an ArtBox.

	
 media

	
 The ArtBox is specified with the same dimensions as the MediaBox.

	
 trim

	
 The ArtBox is specified with the same dimensions as the TrimBox.

	
 crop

	
 The ArtBox is specified with the same dimensions as the CropBox.

 More information:

 -ro-author

 Sets the author in the metadata of the PDF document. Multiple values are concatenated to one string. (When applied to multiple elements the values are concatenated, separated by a comma.)

 	Value:	none | [<string> | content()]+
	Initial:	none
	Applies To:	all elements
	Inherited:	No

 	
 none

	
 Does not set a author.

	
 <string>

	
 Sets the specified string as author.

	
 content()

	
 Sets the author from the content of the element.

 See also:

 -ro-keywords, -ro-subject, -ro-title

 More information:

 background

 This property is a shorthand property for setting most background properties at the same place in the style sheet. Note that only the final background layer may have a background-color.

 	Value:	[<bg-layer>,]* <final-bg-layer>
	Initial:	see individual properties
	Inherited:	No

 MDN documentation:

 background

 See also:

 background-attachment, background-clip, background-color, background-image, background-origin, background-position, background-repeat, background-size

 background-attachment

 If background images are specified, this property specifies whether they are fixed with regard to the viewport ('fixed') or scroll along with the element ('scroll').
 <attachment> = scroll | fixed

 	Value:	<attachment>#
	Initial:	scroll
	Inherited:	No

 	
 scroll

	
 The background is fixed with regard to the element itself and does not scroll with its contents. (It is effectively attached to the element's border.)

	
 fixed

	
 The background is fixed with regard to the viewport. For pages this means that the background is repeated on every page.

 MDN documentation:

 background-attachment

 background-clip

 Determines the background painting area, which determines the area within which the background is painted.

 	Value:	[border-box | padding-box | content-box]#
	Initial:	border-box
	Inherited:	No

 MDN documentation:

 background-clip

 background-color

 This property sets the background color of an element. The color is drawn behind any background images.

 	Value:	<color>
	Initial:	transparent
	Inherited:	No

 MDN documentation:

 background-color

 More information:

 background-image

 This property sets the background image of an element. When setting a background image, authors should also specify a background color that will be used when the image is unavailable. When the image is available, it is rendered on top of the background color. (Thus, the color is visible in the transparent parts of the image).

 	Value:	<bg-image>#
	Initial:	none
	Inherited:	No

 MDN documentation:

 background-image

 background-origin

 For elements rendered as a single box, specifies the background positioning area. For elements rendered as multiple boxes (e.g. boxes on several pages), specifies which boxes 'box-decoration-break' operates on to determine the background positioning area(s).

 	Value:	<box>#
	Initial:	padding-box
	Inherited:	No

 	
 <box>

	
 border-box | padding-box | content-box | -ro-page-box | -ro-bleed-box

	
 -ro-page-box

	
 Only valid for background-images of pages. The background is positioned relative to the page box (including the page margins)

	
 -ro-bleed-box

	
 Only valid for background-images of pages. The background is positioned relative to the bleed box.

 MDN documentation:

 background-origin

 See also:

 box-decoration-break

 background-position

 If a background image has been specified, this property specifies its initial position.

 	Value:	<position>#
	Initial:	0% 0%
	Inherited:	No

 MDN documentation:

 background-position

 background-repeat

 If a background image is specified, this property specifies whether the image is repeated (tiled), and how.

 	Value:	<repeat-style>#
	Initial:	repeat
	Inherited:	No

 MDN documentation:

 background-repeat

 background-size

 Specifies the size of the background images.

 	Value:	<bg-size>#
	Initial:	auto
	Inherited:	No

 MDN documentation:

 background-size

 -ro-barcode

 This shorthand sets "-ro-barcode-content" and "-ro-barcode-type" as well as -ro-replacedelement, which is set to 'barcode' implicitly.

 	Value:	[auto | <string> | <url>] && [<identifier> <identifier>? [<integer> | <string> | <length>]?]
	Initial:	auto qrcode
	Inherited:	No

 -ro-barcode-checkdigit-mode

 Defines how checkdigits are calculated. This property only applies to certain barcode types.

 	Value:	none | mod10 | mod1010 | mod11 | mod1110 | mod43
	Initial:	
	Inherited:	No

 -ro-barcode-color

 Defines the color in which the barcode is rendered.

 	Value:	<color> | current-color
	Initial:	black
	Inherited:	No

 -ro-barcode-composite-content

 Sets the content to be encoded in the linear part of a GS1 composite barcode.

 	Value:	<string>
	Initial:	auto
	Inherited:	No

 -ro-barcode-composite-type

 Defines the barcode type of the linear part of a GS1 Composite barcode.
 Only certain barcode types are allowed.

 	Value:	<identifier> <identifier>?
	Initial:	code128
	Inherited:	No

 -ro-barcode-content

 Defines the data which will be encoded within the barcode.

 	Value:	auto | <string> | <url>
	Initial:	auto
	Inherited:	No

 	
 auto

	
 Encodes the value of the href attribute of the replaced element and resolves its URL when possible. If the href attribute is not set, the text content of the element is used.

	
 string

	
 Encodes the passed string as is.

	
 url

	
 Encodes the URL, relative URLs are resolved according to the documents base URL.

 -ro-barcode-ecc-level

 Defines how much of a barcode's capacity is used to store error correction data.
 Whether this property is applied and its allowed values depend on the used barcode type.

 	Value:	auto | <integer> | L | M | Q | H
	Initial:	auto
	Inherited:	No

 	
 auto

	
 Use the default ecc level.

 -ro-barcode-encoding

 Defines how the data contained within a barcode should be encoded. This property might be ignored, depending on the barcode type.

 	Value:	auto | eci | hibc | gs1
	Initial:	auto
	Inherited:	No

 -ro-barcode-font-family

 Defines the font family to be used in the human readable text of a barcode.

 	Value:	<'font-family'>
	Initial:	sans-serif
	Inherited:	No

 -ro-barcode-font-size

 Sets the default font size for the human readable text.

 	Value:	<'font-size'>
	Initial:	8pt
	Inherited:	No

 -ro-barcode-human-readable-affix

 Defines the affixes at the beginning and end of the human readable text.
 One value sets both affixes.
 Whether this property is applied and its behavior depends on the used barcode type.

 	Value:	none | [<string> <string>?]
	Initial:	none
	Inherited:	No

 -ro-barcode-human-readable-position

 Defines the position and alignment of the human readable text or removes it.
 This property only applies to certain barcode types.

 	Value:	[[top | bottom] || [left | center | right]] | none
	Initial:	bottom center
	Inherited:	No

 -ro-barcode-reader-initialization

 Defines whether reader initialization instructions should be added to the barcode. This property only applies to certain barcode types.

 	Value:	enabled | disabled
	Initial:	disabled
	Inherited:	No

 -ro-barcode-size

 Defines the size of a barcode. Which values are allowed depends on the used barcode type. The second integer only applies to PDF417 barcodes, setting their columns and rows.

 	Value:	auto | [<integer>{1,2} || [<length> | <percentage>]]
	Initial:	auto
	Inherited:	No

 	
 <integer>

	
 Size value of the barcode.

	
 auto

	
 Use the default size.

	
 <length-percentage>

	
 Sets the bar length of 1D barcodes.

 -ro-barcode-structured-append

 Defines a structured series, the first value sets the total number of barcodes belonging to the series, the second value defines the ID of the series. This property only applies to certain barcode types.

 	Value:	none | [<integer> [<string> | <integer>]?]
	Initial:	none
	Inherited:	No

 -ro-barcode-structured-append-position

 Defines the position of a barcode within a structured series. This property only applies to certain barcode types.

 	Value:	none | <integer>
	Initial:	none
	Inherited:	No

 -ro-barcode-type

 Defines the type of barcode to be drawn. The second identifier selects the subtype.

 	Value:	<identifier> <identifier>? [<integer> | <string> | <length>]?
	Initial:	qrcode
	Inherited:	No

 bleed -ro-bleed-width

 Specifies the width of the bleed area around the TrimBox. This implicitly defines the size of the BleedBox. Twice the bleed width added up on the width and height of the TrimBox' (twice for both sides of the TrimBox).

 	Value:	auto | <length>
	Initial:	auto
	Applies To:	page context
	Inherited:	No

 	
 auto

	
 There is no bleed area round the TrimBox, except when crop marks are enabled, which causes a bleed width of 6pt.

	
 <length>

	
 The length of the bleed area on each side of the TrimBox.

 See also:

 size

 More information:

 block-size inline-size

 These properties set width and height based on the logical directions (depending on text direction).
 The property 'block-size' set the height, while 'inline-size' sets the width.

 	Value:	<'width'>
	Initial:	auto
	Applies To:	Same as 'width', 'height'
	Inherited:	No

 MDN documentation:

 block-size, inline-size

 See also:

 height, width

 bookmark-label -ro-bookmark-label

 Defines the text content of a bookmark, i.e. the title as it appears in a PDF reader's outline. For more details on the values, please see the documentation of 'string-set'.

 	Value:	[<string> | <named-string> | <quote> | counter() | counters() | content() | target-text() | target-counters() | target-counter()]+
	Initial:	content(text)
	Inherited:	No

 See also:

 string-set

 bookmark-level -ro-bookmark-level

 Using this property, one can structure the specified elements within the bookmark view of the PDF viewer. The elements are ordered in ascending order. The element with the lowest bookmark level is on top of the bookmark hierarchy (similar to HTML headlines).

 	Value:	none | <integer>
	Initial:	none
	Inherited:	No

 	
 none

	
 Do not create a bookmark.

	
 <integer>

	
 An integer greater than 0, that indicates the level of the bookmark.

 See also:

 -ro-destination-area

 bookmark-state -ro-bookmark-state

 This property defines whether a bookmark should be opened, thus showing the next level of bookmarks. If set to closed, the bookmark's descendants are initially hidden.

 	Value:	open | closed
	Initial:	open
	Applies To:	block-level elements
	Inherited:	No

 	
 open

	
 The bookmark is opened by default, showing the bookmarks of the next level.

	
 closed

	
 The bookmark is closed by default, hiding the bookmarks of the next level.

 -ro-bookmarks-enabled

 This property allows to enable or disable PDF bookmarks for the content inside an iframe.
 If the iframe is seamless, this property is set to true by default.

 	Value:	true | false
	Initial:	false
	Applies To:	iframe
	Inherited:	No

 More information:

 border

 This property is a shorthand property for setting the same width, color, and style for all four borders of a box.

 	Value:	<line-width> || <line-style> || <color>
	Initial:	see individual properties
	Inherited:	No

 MDN documentation:

 border

 See also:

 border-color, border-style, border-width

 border-block border-inline

 These properties set borders based on the logical directions (depending on text direction). Block direction is top and bottom, inline direction is left and right.

 	Value:	<border-width> || <border-style> || <color>
	Initial:	
	Inherited:	No

 MDN documentation:

 border-block, border-inline

 border-block-color border-inline-color

 These properties set border colors based on the logical directions (depending on text direction).
 The first value of border-block-color represents the top edge style, and the second value represents the bottom edge style. The values of border-inline-color represent the left and right edge style in BiDi-dependent order. If only one value is given, it applies to both the start and end edges.

 	Value:	<color>{1,2}
	Initial:	
	Inherited:	No

 MDN documentation:

 border-block-color, border-inline-color

 More information:

 border-block-style border-inline-style

 These properties set border styles based on the logical directions (depending on text direction). The first value of border-block-style represents the top edge style, and the second value represents the bottom edge style. The values of border-inline-style represent the left and right edge style in BiDi-dependent order. If only one value is given, it applies to both the start and end edges.

 	Value:	<border-style>{1,2}
	Initial:	see individual properties
	Inherited:	No

 MDN documentation:

 border-block-style, border-inline-style

 More information:

 border-block-width border-inline-width

 These properties set border widths based on the logical directions (depending on text direction). The first value of -width represents the top edge style, the second value represents the bottom edge style. The values of border-inline-width represent the left and right edge style in BiDi-dependent order. If only one value is given, it applies to both the start and end edges.

 	Value:	<border-width>{1,2}
	Initial:	
	Inherited:	No

 MDN documentation:

 border-block-width, border-inline-width

 More information:

 border-bottom-left-radius border-bottom-right-radius border-top-left-radius border-top-right-radius

 The two length or percentage values of the 'border-*-radius' properties define the radii of a quarter ellipse that defines the shape of the corner of the outer border edge.

 	Value:	[<length> | <percentage>]{1,2}
	Initial:	0
	Applies To:	all elements (but see prose)
	Inherited:	No

 MDN documentation:

 border-bottom-left-radius, border-bottom-right-radius, border-top-left-radius, border-top-right-radius

 See also:

 border-radius

 border-collapse

 This property selects a table's border model.

 	Value:	collapse | separate
	Initial:	separate
	Applies To:	'table' and 'inline-table' elements
	Inherited:	Yes

 MDN documentation:

 border-collapse

 border-color

 The 'border-color' property sets the color of the four borders.

 	Value:	[<color>]{1,4}
	Initial:	see individual properties
	Inherited:	No

 MDN documentation:

 border-color

 See also:

 border-*-color

 More information:

 -ro-border-inline-start -ro-border-inline-end -ro-border-block-start -ro-border-block-end border-inline-start border-inline-end border-block-start border-block-end

 These properties set borders based on the logical directions (depending on text direction). Block start and end correspond to top and bottom. Inline start and end correspond to left and right or right and left, depending on the BiDi text direction.

 	Value:	<border-width> || <border-style> || <color>
	Initial:	see individual properties
	Inherited:	No

 MDN documentation:

 border-inline-start, border-inline-end, border-block-start, border-block-end

 See also:

 border-top, border-right, border-bottom, border-left

 More information:

 -ro-border-inline-start-color -ro-border-inline-end-color -ro-border-block-start-color -ro-border-block-end-color border-inline-start-color border-inline-end-color border-block-start-color border-block-end-color

 These properties set border colors based on the logical directions (depending on text direction).
 Block start and end correspond to top and bottom. Inline start and end correspond to left and right or right and left, depending on the BiDi text direction.

 	Value:	<color>
	Initial:	currentColor
	Inherited:	No

 MDN documentation:

 border-inline-start-color, border-inline-end-color, border-block-start-color, border-block-end-color

 See also:

 border-*-color

 More information:

 -ro-border-inline-start-style -ro-border-inline-end-style -ro-border-block-start-style -ro-border-block-end-style border-inline-start-style border-inline-end-style border-block-start-style border-block-end-style

 These properties set border styles based on the logical directions (depending on text direction).
 Block start and end correspond to top and bottom. Inline start and end correspond to left and right or right and left, depending on the BiDi text direction.

 	Value:	<border-style>
	Initial:	none
	Inherited:	No

 MDN documentation:

 border-inline-start-style, border-inline-end-style, border-block-start-style, border-block-end-style

 See also:

 border-*-style

 More information:

 -ro-border-inline-start-width -ro-border-inline-end-width -ro-border-block-start-width -ro-border-block-end-width border-inline-start-width border-inline-end-width border-block-start-width border-block-end-width

 These properties set border widths based on the logical directions (depending on text direction).
 Block start and end correspond to top and bottom. Inline start and end correspond to left and right or right and left, depending on the BiDi text direction.

 	Value:	<border-width>
	Initial:	medium
	Inherited:	No

 MDN documentation:

 border-inline-start-width, border-inline-end-width, border-block-start-width, border-block-end-width

 See also:

 border-*-width

 More information:

 -ro-border-length

 Defines the length of a top border starting from the left (or the right if direction is right-to-left).

 	Value:	<percentage> | <length> | auto
	Initial:	auto
	Inherited:	No

 border-radius

 The 'border-radius' shorthand sets all four 'border-*-radius' properties.

 	Value:	[<length> | <percentage>]{1,4}
 [/ [<length> | <percentage>]{1,4}]?
	Initial:	see individual properties
	Applies To:	all elements (but see prose)
	Inherited:	No

 MDN documentation:

 border-radius

 See also:

 border-*-radius

 border-spacing

 The lengths specify the distance that separates adjoining cell borders.

 	Value:	<length> <length>?
	Initial:	0
	Applies To:	'table' and 'inline-table' elements
	Inherited:	Yes

 MDN documentation:

 border-spacing

 border-start-start-radius border-start-end-radius border-end-start-radius border-end-end-radius

 These properties set border radii based on the logical directions (depending on text direction).
 The mapping depends on the BiDi text direction of the element. The properties border-start-start-radius and border-start-end-radius always map to the styles for the top, border-end-start-radius and border-end-end-radius always to the styles for the bottom of the element.

 	Value:	[<length> | <percentage>]{1,2}
	Initial:	0
	Inherited:	No

 See also:

 border-*-radius

 More information:

 border-style

 The 'border-style' property sets the style of the four borders. It can have from one to four component values, and the values are set on the different sides as for 'border-width'.

 	Value:	<border-style>{1,4}
	Initial:	see individual properties
	Inherited:	No

 MDN documentation:

 border-style

 See also:

 border-*-style

 border-top border-right border-bottom border-left

 This is a shorthand property for setting the width, style, and color of the top, right, bottom, and left border of a box.

 	Value:	<border-width> || <border-style> || <color>
	Initial:	see individual properties
	Inherited:	No

 MDN documentation:

 border-top, border-right, border-bottom, border-left

 See also:

 border-*-*, border-*-color, border-*-style, border-*-width

 border-top-color border-right-color border-bottom-color border-left-color

 The 'border-*-color' properties set the color of the specified border.

 	Value:	<color>
	Initial:	currentColor
	Inherited:	No

 MDN documentation:

 border-top-color, border-right-color, border-bottom-color, border-left-color

 See also:

 border-*-*-color

 More information:

 border-top-style border-right-style border-bottom-style border-left-style

 The border style properties specify the line style of a box's border (solid, double, dashed, etc.). The properties defined in this section refer to the <border-style> value type, which may take one of the following values:

 	Value:	<border-style>
	Initial:	none
	Inherited:	No

 MDN documentation:

 border-top-style, border-right-style, border-bottom-style, border-left-style

 See also:

 border-*-*-style

 border-top-width border-right-width border-bottom-width border-left-width

 The border width properties specify the width of the border area.

 	Value:	<border-width>
	Initial:	medium
	Inherited:	No

 MDN documentation:

 border-top-width, border-right-width, border-bottom-width, border-left-width

 See also:

 border-*-*-width

 border-width

 This property is a shorthand property for setting 'border-top-width', 'border-right-width', 'border-bottom-width', and 'border-left-width' at the same place in the style sheet.

 	Value:	<border-width>{1,4}
	Initial:	see individual properties
	Inherited:	No

 MDN documentation:

 border-width

 See also:

 border-*-width

 bottom

 Like 'top', but specifies how far a box's bottom margin edge is offset above the bottom of the box's containing block. For relatively positioned boxes, the offset is with respect to the bottom edge of the box itself.

 	Value:	<length> | <percentage> | auto
	Initial:	auto
	Applies To:	positioned elements
	Inherited:	No

 MDN documentation:

 bottom

 See also:

 inset-*

 box-decoration-break

 When a block is split, this property determines whether margins, borders and paddings wrap the edges of the split box or if they should be "sliced".
 If a block has a background, this property determines whether the background is "sliced".

 	Value:	slice | clone
	Initial:	slice
	Inherited:	No

 MDN documentation:

 box-decoration-break

 box-shadow

 Applies one or more rectangular shadows to a box.

 	Value:	none | [inset? && <length>{2,4} && <color>?]#
	Initial:	none
	Inherited:	No

 MDN documentation:

 box-shadow

 box-sizing

 Defines which box is used to calculate the widths and heights of elements.

 	Value:	content-box | border-box
	Initial:	content-box
	Inherited:	No

 MDN documentation:

 box-sizing

 break-before break-after

 These properties describe page/column/region break behavior before/after the element's box.

 	Value:	auto | always | avoid | left | right | verso | recto | page | column | region | avoid-page | avoid-column | avoid-region
	Initial:	auto
	Applies To:	block-level elements
	Inherited:	No

 MDN documentation:

 break-before, break-after

 More information:

 break-inside

 This property describes the page/column/region break behavior inside the element's box.

 	Value:	auto | avoid | avoid-page | avoid-column | avoid-region
	Initial:	auto
	Applies To:	block-level elements
	Inherited:	No

 MDN documentation:

 break-inside

 More information:

 caption-side

 This property specifies the position of the caption box with respect to the table box. In order to ensure that top caption is on the first page, it should be the table's first child. If the caption should be on the last page, place the caption as the table's last child.

 	Value:	top | bottom
	Initial:	top
	Applies To:	'table-caption' elements
	Inherited:	Yes

 MDN documentation:

 caption-side

 -ro-change-bar

 Shorthand property to set all change bar properties.

 	Value:	none | [<color> || <'-ro-change-bar-align'> || [<'-ro-change-bar-offset'> <'-ro-change-bar-width'>?]]
	Initial:	
	Inherited:	No

 More information:

 -ro-change-bar-align

 Specifies at which horizontal base position a change bar should appear, e.g. on which side of a page.

 	Value:	[start | end | left | right | inside | outside] || [[page || distribute-column] | column]
	Initial:	start page
	Inherited:	No

 	
 start

	
 The change bar is positioned to the left for left-to-right documents or to the right for right-to-left documents. This is the default direction.

	
 end

	
 The change bar is positioned to the right for left-to-right documents or to the left for right-to-left documents.

	
 left

	
 The change bar is positioned to the left.

	
 right

	
 The change bar is positioned to the right.

	
 inside

	
 The change bar is positioned on the side that would be the inside of a book, i.e. on the right for left pages and on the left for right pages.

	
 outside

	
 The change bar is positioned on the side that would be the outside of a book, i.e. on the left for left pages and on the right for right pages.

	
 distribute-column

	
 This only works if the change bars are set to be placed on the page. Optional setting that enables a special behavior of change bars for elements in multi-column contexts, where they are placed on the page side that is closer to its respective column. If the distance is equal, the specified direction is used.

	
 page

	
 Sets that the base position of the change bars should always be the page margin. This is default behavior.

	
 column

	
 If set and the change bar creating element is inside a multi-column context, the change bar is rendered next to the column instead of inside the page margin.

 See also:

 -ro-change-bar-color

 More information:

 -ro-change-bar-color

 Enables a change bar of the specified color that appears next to the matching elements (usually in the page margin). For other settings like width or position of the change bar, see the respective change bar properties.

 	Value:	none | <color>
	Initial:	none
	Inherited:	No

 	
 none

	
 There is no change bar for this element.

	
 <color>

	
 A change bar of the specified color is created for this element.

 See also:

 -ro-change-bar-align, -ro-change-bar-offset, -ro-change-bar-width

 More information:

 -ro-change-bar-offset

 Specifies the horizontal gap between a change bar and the respective container's edge. Percentages are resolved against either the margin width of the corresponding side or, in the case of change bars in multi-column elements, against the column gap width. The offset is directed outwards (i.e. away from the content creating it), but negative values are allowed.

 	Value:	<length> | <percentage>
	Initial:	25%
	Inherited:	No

 See also:

 -ro-change-bar-color

 More information:

 -ro-change-bar-width

 Specifies the width of the change bar if one is created via setting a change bar color on the matching element.

 	Value:	<border-width>
	Initial:	medium
	Inherited:	No

 See also:

 -ro-change-bar-color

 More information:

 clear

 This property indicates which sides of an element's box(es) may not be adjacent to an earlier floating box. The 'clear' property does not consider floats inside the element itself or in other block formatting contexts.

 	Value:	none | left | right | inline-start | inline-end | both
	Initial:	none
	Inherited:	No

 MDN documentation:

 clear

 clip

 A clipping region defines what portion of an element's border box is visible. By default, the element is not clipped. However, the clipping region may be explicitly set with the 'clip' property.

 	Value:	<shape> | auto
	Initial:	auto
	Applies To:	absolutely positioned elements
	Inherited:	No

 	
 auto

	
 The element does not clip.

	
 <shape>

	
 In CSS 2.1, the only valid <shape> value is: rect(<top>, <right>, <bottom>, <left>) where <top> and <bottom> specify offsets from the top border edge of the box, and <right>, and <left> specify offsets from the left border edge of the box. Authors should separate offset values with commas.
<top>, <right>, <bottom>, and <left> may either have a <length> value or 'auto'. Negative lengths are permitted. The value 'auto' means that a given edge of the clipping region will be the same as the edge of the element's generated border box (i.e., 'auto' means the same as '0' for <top> and <left>, the same as the used value of the height plus the sum of vertical padding and border widths for <bottom>, and the same as the used value of the width plus the sum of the horizontal padding and border widths for <right>, such that four 'auto' values result in the clipping region being the same as the element's border box).

 MDN documentation:

 clip

 clip-path

 This property creates a clipping region that sets what part of an element should be shown. Parts that are inside the region are shown, while those outside are hidden.

 	Value:	<clip-source> | [<basic-shape> || <geometry-box>] | none
	Initial:	none
	Inherited:	No

 	
 clip-source

	
 An URL to the <clipPath> element within an SVG which outlines the shape to be clipped.

	
 basic shape

	
 A CSS function describing a shape as defined in the CSS Shapes module. This can be inset(), circle(), ellipse(), or polygon().

	
 geometry box

	
 If used in combination with a basic shape, it provides the reference box according to which the shape is drawn.
If used by itself, the edges of the specified box are used, including any corner shaping.
Valid values are: border-box, padding-box, content-box, margin-box, fill-box, stroke-box and view-box.
For elements with associated CSS layout box, the used value for fill-box is content-box and for stroke-box and view-box is border-box.

 MDN documentation:

 clip-path

 color

 This property describes the foreground color of an element's text content.

 	Value:	<color>
	Initial:	black
	Inherited:	Yes

 MDN documentation:

 color

 More information:

 -ro-colorbar-top-left -ro-colorbar-top-right -ro-colorbar-bottom-left -ro-colorbar-bottom-right -ro-colorbar-left-top -ro-colorbar-left-bottom -ro-colorbar-right-top -ro-colorbar-right-bottom

 Color bars for print layout in oversized pages.

 	Value:	gradient-tint | progressive-color | [<color>]+ | none
	Initial:	none
	Applies To:	page context
	Inherited:	No

 	
 gradient-tint

	
 Defines a set of 11 grayscale colors, starting with a CMYK value of 0% each and raising the cyan, magenta and yellow values by 10% on every step.

	
 progressive-color

	
 Defines a set including solid process colors (cyan, magenta, yellow, black), solid overprint colors (cyan & magenta, cyan & yellow, magenta & yellow) and a 50% tint of each of the process colors.

	
 [<color>]+

	
 One or more colors which will be sequentially painted from left to right or from top to bottom respectively.

 More information:

 ,

 -ro-column-break-before -ro-column-break-after

 These properties describe column break behavior before/after the element's box.

 	Value:	auto | always | avoid
	Initial:	auto
	Applies To:	block-level elements
	Inherited:	No

 Deprecated!

 Use break-before, break-after instead.

 column-count

 This property specifies the number of columns of a multi-column element. Numbers below 1 are invalid. If the property column-width is also set to a non-auto value, the property that leads to fewer columns takes precedence.

 	Value:	<integer> | auto
	Initial:	auto
	Applies To:	block containers
	Inherited:	No

 MDN documentation:

 column-count

 See also:

 column-width

 More information:

 -ro-column-count

 This property specifies the number of columns of a multi-column element.

 	Value:	<integer> | auto
	Initial:	auto
	Inherited:	No

 Deprecated!

 Use column-count instead.

 column-fill

 In continuous media, this property will only be consulted if the length of columns has been constrained. Otherwise, columns will automatically be balanced.

 	Value:	balance | auto
	Initial:	balance
	Applies To:	multicol elements
	Inherited:	No

 MDN documentation:

 column-fill

 More information:

 -ro-column-fill

 In continuous media, this property will only be consulted if the length of columns has been constrained. Otherwise, columns will automatically be balanced.

 	Value:	balance | auto
	Initial:	balance
	Inherited:	No

 Deprecated!

 Use column-fill instead.

 -ro-column-gap

 The 'column-gap' property sets the gap between columns. If there is a column rule between columns, it will appear in the middle of the gap.

 	Value:	<length> | normal
	Initial:	normal
	Inherited:	No

 Deprecated!

 Use column-gap, grid-column-gap instead.

 column-gap grid-column-gap

 The 'column-gap' property sets the gap between columns. If there is a column rule between columns, it will appear in the middle of the gap.

 	Value:	<length> | <percentage> | normal
	Initial:	normal
	Applies To:	multi-column containers and grid containers
	Inherited:	No

 MDN documentation:

 column-gap

 More information:

 column-rule

 This property is a shorthand for setting 'column-rule-width', 'column-rule-style', and 'column-rule-color' at the same place in the style sheet. Omitted values are set to their initial values.

 	Value:	<'column-rule-width'> || <'column-rule-style'> || [<'column-rule-color'>]
	Initial:	see individual properties
	Applies To:	multicol elements
	Inherited:	No

 MDN documentation:

 column-rule

 See also:

 column-rule-color, column-rule-style, column-rule-width

 More information:

 -ro-column-rule

 This property is a shorthand for setting 'column-rule-width', 'column-rule-style', and 'column-rule-color' at the same place in the style sheet. Omitted values are set to their initial values.

 	Value:	<'column-rule-width'> || <'column-rule-style'> || [<'column-rule-color'>]
	Initial:	see individual properties
	Inherited:	No

 Deprecated!

 Use column-rule instead.

 column-rule-color

 This property sets the color of the column rule.

 	Value:	<color> | none
	Initial:	currentColor
	Applies To:	multicol elements
	Inherited:	No

 MDN documentation:

 column-rule-color

 More information:

 ,

 -ro-column-rule-color

 This property sets the color of the column rule.

 	Value:	<color> | none
	Initial:	currentColor
	Inherited:	No

 Deprecated!

 Use column-rule-color instead.

 column-rule-style

 The 'column-rule-style' property sets the style of the rule between columns of an element. The <border-style> values are defined in CSS2.1 and the values are interpreted as in the collapsing border model.

 	Value:	<border-style> | none
	Initial:	none
	Applies To:	multicol elements
	Inherited:	No

 MDN documentation:

 column-rule-style

 See also:

 border-style

 More information:

 -ro-column-rule-style

 The 'column-rule-style' property sets the style of the rule between columns of an element. The <border-style> values are defined in CSS2.1 and the values are interpreted as in the collapsing border model.

 	Value:	<border-style> | none
	Initial:	none
	Inherited:	No

 Deprecated!

 Use column-rule-style instead.

 column-rule-width

 This property sets the width of the rule between columns. Negative values are not allowed.

 	Value:	<border-width> | <percentage> | none
	Initial:	medium
	Applies To:	multicol elements
	Inherited:	No

 MDN documentation:

 column-rule-width

 See also:

 border-width

 More information:

 -ro-column-rule-width

 	Value:	<border-width> | <percentage> | none
	Initial:	medium
	Inherited:	No

 Deprecated!

 Use column-rule-width instead.

 column-span

 This property describes how many columns an element spans across.

 	Value:	none | all
	Initial:	none
	Applies To:	block-level elements, except floating and absolutely positioned elements
	Inherited:	No

 MDN documentation:

 column-span

 More information:

 -ro-column-span

 This property describes how many columns an element spans across.

 	Value:	none | all
	Initial:	none
	Inherited:	No

 Deprecated!

 Use column-span instead.

 column-width

 This property specifies the width of columns in multi-column elements. Negative lengths are invalid. Lengths below 1px are treated as 1px. If the property column-count is also set to a non-auto value, the property that leads to fewer columns takes precedence.

 	Value:	<length> | auto
	Initial:	auto
	Applies To:	block containers
	Inherited:	No

 MDN documentation:

 column-width

 See also:

 column-count

 More information:

 -ro-column-width

 This property specifies the width of columns in multi-column elements.

 	Value:	<length> | auto
	Initial:	auto
	Inherited:	No

 Deprecated!

 Use column-width instead.

 columns

 This is a shorthand property for setting 'column-width' and 'column-count'. Omitted values are set to their initial values.

 	Value:	[<integer> | auto] || [<length> | auto]
	Initial:	see individual properties
	Applies To:	block containers
	Inherited:	No

 MDN documentation:

 columns

 See also:

 column-count, column-width

 More information:

 -ro-columns

 This is a shorthand property for setting 'column-width' and 'column-count'. Omitted values are set to their initial values.

 	Value:	<integer> | <length> | auto
	Initial:	see individual properties
	Inherited:	No

 Deprecated!

 Use columns instead.

 -ro-comment-color

 Specifies the color of the comment.

 	Value:	auto | <color>
	Initial:	auto
	Inherited:	No

 	
 auto

	
 The color depends on the value of the '-ro-comment-style' property: '-ro-comment-highlight' for 'note' and 'highlight', '-ro-comment-underline' for 'underline' and 'squiggly', '-ro-comment-strikeout' for 'strikeout'

	
 <color>

	
 The color of the comment.

 More information:

 ,

 -ro-comment-content

 Specifies the content of a comment.

 	Value:	none | [<string> | content()]+
	Initial:	none
	Inherited:	No

 	
 none

	
 The comment receives no content.

	
 <string>

	
 Defines the content of the comment.

	
 content()

	
 Defines the content of the comment from the content of the element.

 More information:

 -ro-comment-date

 Specifies the date of the comment.

 	Value:	auto | <string>
	Initial:	auto
	Inherited:	No

 	
 auto

	
 The date of the comment is the current date.

	
 <string>

	
 The date of the comment, formatted according to the value of the "-ro-comment-dateformat" property.

 More information:

 -ro-comment-dateformat

 The format wich is applied to the string value of the "-ro-comment-date" property. The format of this value is similar to the Java SimpleDateFormat class.
 The initial value is the ISO date format.

 	Value:	<string>
	Initial:	"yyyy-MM-dd'T'kk:mm:ss"
	Inherited:	No

 	
 <string>

	
 The date format for the comment.

 More information:

 -ro-comment-position

 The position of the note icon of the comment. This property is only applicable when the value of the property "-ro-comment-style" is set to note.

 	Value:	auto | page-left | page-right
	Initial:	auto
	Inherited:	No

 	
 page-left

	
 Shifts the note icon to the left side of the page.

	
 page-right

	
 Shifts the note icon to the right side of the page.

	
 auto

	
 The note icon is placed next to the commented text.

 More information:

 -ro-comment-start -ro-comment-end

 Specifies the start or end elements which encompass commented text. Both properties have to be specified on the respective element to link the start element of the comment with the end element.

 	Value:	none | [<string> [<string>]?]
	Initial:	none
	Inherited:	No

 	
 none

	
 The element is not a comment start or end element.

	
 <string>

	
 A unique identifier which links start and end element.

	
 [<string>]

	
 An optional second identifier to link start and end properties. This should only be used if the unique identifier is not unique for all elements but only for certain elements.

 More information:

 -ro-comment-state

 The initial state of the comment bubbles displayed by the viewer. This property only affects certain PDF viewers.

 	Value:	open | closed
	Initial:	closed
	Inherited:	No

 	
 open

	
 All comment bubbles will be opened and displayed when the document is opened in the PDF viewer.

	
 closed

	
 All comment bubbles will be closed when the document is opened in the PDF viewer.

 More information:

 -ro-comment-style

 Specifies the style of the comment.

 	Value:	note | highlight | underline | strikeout | squiggly | invisible
	Initial:	note
	Inherited:	No

 	
 note

	
 Displays the comment as a note icon.

	
 highlight

	
 Highlights the background of the comment area in a certain color.

	
 underline

	
 Underlines the text of the comment area with a straight line.

	
 strikeout

	
 Strikes out the text of the comment area.

	
 squiggly

	
 Underlines the text of the comment area with a squiggly line.

	
 invisible

	
 Does not visualize the comment in any way.

 More information:

 -ro-comment-title

 Specifies the title or author of the comment.

 	Value:	none | <string>
	Initial:	none
	Inherited:	No

 	
 none

	
 The comment receives no title.

	
 <string>

	
 Defines the title of the comment.

 More information:

 content

 This property is used with the :before and :after pseudo-elements to generate content in a document.

 	Value:	normal | none | [<string> | <named-string> | <uri> | <quote> | counter() | -ro-counter-offset() | counters() | content() | target-text() | target-counters() | target-counter() | -ro-target-counter-offset() | leader()]+ | <running-element> | <running-document>
	Initial:	normal
	Applies To:	:before and :after pseudo-elements as well as page-margin boxes
	Inherited:	No

 	
 <named-string> ☛

	
 Named strings may be specified with the function: 'string()'. The string function has two arguments. The name of the named string as identifier and the location on the page (which is optional).

	
 <running-element> ☛

	
 Running Elements may be specified with the function: 'element()' from a position property. The element function has two arguments. The name of the running element as identifier and the location on the page (which is optional).

	
 <running-document> ☛

	
 Running documents may be specified with the proprietary function 'xhtml()', which takes an HTML string or a URL function.

 MDN documentation:

 content

 More information:

 , ,

 counter-increment

 The 'counter-increment' property increases or decreases the value of counters.

 	Value:	none | [<identifier> <integer>?]+
	Initial:	none
	Inherited:	No

 MDN documentation:

 counter-increment

 More information:

 ,

 counter-reset

 The 'counter-reset' property sets a list of counters to a certain value.

 	Value:	none | [<identifier> <integer>?]+
	Initial:	none
	Inherited:	No

 MDN documentation:

 counter-reset

 More information:

 ,

 -ro-counter-set

 The '-ro-counter-set' property contains a list of one or more names of counters, each one optionally followed by an integer.
 The integer gives the value that the counter is set to on each occurrence of the element. The default is 0.
 The difference to the 'counter-reset' property is, that '-ro-counter-set' does not create a new instance of a counter if an existing counter is present. This allows '-ro-counter-set' to reset an existing counter from anywhere inside the document.

 	Value:	none | [<identifier> <integer>?]+
	Initial:	none
	Inherited:	No

 More information:

 -ro-crop-size

 Specifies the size of the CropBox, one of the PDF page boxes.

 	Value:	none | <length>{1,2} | [<page-size> || [portrait | landscape]] | media | trim | art
	Initial:	none
	Applies To:	page context
	Inherited:	No

 	
 none

	
 The element does not specify a CropBox.

	
 media

	
 The CropBox is specified with the same dimensions as the MediaBox.

	
 trim

	
 The CropBox is specified with the same dimensions as the TrimBox.

	
 art

	
 The CropBox is specified with the same dimensions as the ArtBox.

 More information:

 -ro-destination-area

 For elements targeted by bookmarks or internal links allows specifying how the coordinate to scroll to is determined.

 	Value:	[self | expand | page] || [content-box | padding-box | border-box | margin-box | -ro-page-box | -ro-bleed-box | auto] || [<length> <length>?]
	Initial:	auto
	Inherited:	No

 	
 self

	
 The element itself is the target.

	
 expand

	
 A parent of the element, determined based on the structure, is the target. (default)

	
 page

	
 The page the element is on is the target.

	
 content-box | padding-box | border-box | margin-box

	
 The layout box of the target to get the top left coordinate from.

	
 -ro-page-box | -ro-bleed-box

	
 The page box of the target to get the top left coordinate from. Matches margin-box for non-page targets, unless the target is a direct descendant of the page.

	
 auto

	
 Matches -ro-page-box for page targets and border-box otherwise. (default)

	
 <length>

	
 Additional offset for the coordinate. May be negative. Using 2 lengths specifies x and y offsets separately. Defaults to 6pt.

 See also:

 bookmark-level, -ro-link

 More information:

 ,

 direction

 This property specifies the base writing direction. Also effects horizontally arranged boxes, e.g. tables and flex, as well as logical properties and values.

 	Value:	ltr | rtl
	Initial:	ltr
	Inherited:	Yes

 MDN documentation:

 direction

 See also:

 unicode-bidi

 More information:

 ,

 display

 The computed value is the same as the specified value, except for positioned and floating elements (see Relationships between 'display', 'position', and 'float') and for the root element.
 Note that although the initial value of 'display' is 'inline', rules in the user agent's default style sheet may override this value.

 	Value:	inline | block | list-item | inline-block | table | inline-table | table-row-group | table-column | table-column-group | table-header-group | table-footer-group | table-row | table-cell | table-caption | flex | inline-flex | grid | inline-grid | -ro-fast-table | none
	Initial:	inline
	Inherited:	No

 	
 -ro-fast-table

	
 This proprietary value is used to create very simple and fast tables. While these tables support only very basic styles and require all rows to have the same height, they can be extremely large without having a significantly impact on performance or memory consumption.

 MDN documentation:

 display

 More information:

 empty-cells

 In the separated borders model, this property controls the rendering of borders and backgrounds around cells that have no visible content.

 	Value:	show | hide
	Initial:	show
	Applies To:	'table-cell' elements
	Inherited:	Yes

 MDN documentation:

 empty-cells

 fallback

 The fallback descriptor can be used to specify a counter style to fall back to if the current counter style cannot create a marker representation for a particular counter value.

 	Value:	<identifier>
	Initial:	decimal
	Applies To:	@counter-style
	Inherited:	No

 MDN documentation:

 fallback

 filter

 Allows to apply one or more graphical effects on an element. When doing so, the element is rasterized. The quality of the resulting image can be customized via the proprietary property "-ro-rasterization-supersampling". Note that a higher quality has a negative impact on performance and memory.

 	Value:	[<filter-function>]+ | none
	Initial:	none
	Inherited:	No

 MDN documentation:

 filter

 See also:

 -ro-rasterization-supersampling

 first-page-side

 Defines whether the first page of the document is a left or right page.

 	Value:	left | right | verso | recto | auto
	Initial:	auto
	Applies To:	@-ro-preferences
	Inherited:	No

 	
 left

	
 The first page is a left page.

	
 right

	
 The first page is a right page.

	
 verso

	
 Same as 'left', unless the document direction is right-to-left, i.e. the root or body element has a 'direction' value of 'rtl', in which case it is the same as 'right'.
This means that the first page is not a cover page.

	
 recto

	
 Same as 'right', unless the document direction is right-to-left, i.e. the root or body element has a 'direction' value of 'rtl', in which case it is the same as 'left'.
This means that the first page is a cover page.

	
 auto

	
 Same as 'recto', unless the root or body element has a 'break-before' value of 'left', 'right' or 'verso', in which case it is the same as that value.

 See also:

 break-before, break-after, direction, first-page-side-view

 More information:

 first-page-side-view

 Defines whether the first page should appear to be left or a right page. In contrast to first-page-side, this property does not influence the layout, only on which side the page is shown in the viewer application.

 	Value:	left | right | verso | recto | auto
	Initial:	auto
	Applies To:	@-ro-preferences
	Inherited:	No

 	
 left

	
 The first page is displayed left.

	
 right

	
 The first page is displayed right.

	
 verso

	
 Same as 'left', unless the document direction is right-to-left, i.e. the root or body element has a 'direction' value of 'rtl', in which case it is the same as 'right'.
This means that the first page is not displayed as a cover page.

	
 recto

	
 Same as 'right', unless the document direction is right-to-left, i.e. the root or body element has a 'direction' value of 'rtl', in which case it is the same as 'left'.
This means that the first page is displayed as a cover page.

	
 auto

	
 Same as the used value of 'first-page-side'.

 See also:

 direction, first-page-side

 More information:

 flex

 Specifies the components of a flexible length: The grow factor, the shrink factor and the basis.

 	Value:	none | [<'flex-grow'> <'flex-shrink'>? || <'flex-basis'>]
	Initial:	1 0 auto
	Applies To:	flex items
	Inherited:	No

 MDN documentation:

 flex

 See also:

 flex-basis, flex-grow, flex-shrink

 flex-basis

 Sets the flex basis, which is used to determine the size of flex items (before growing or shrinking them).

 	Value:	content | <'width'>
	Initial:	auto
	Applies To:	flex items
	Inherited:	No

 MDN documentation:

 flex-basis

 flex-direction

 Specifies in which direction flex items are placed in the flex container.

 	Value:	row | row-reverse | column | column-reverse
	Initial:	row
	Applies To:	flex containers
	Inherited:	No

 MDN documentation:

 flex-direction

 flex-flow

 Shorthand property for flex-direction and flex-wrap.

 	Value:	<'flex-direction'> || <'flex-wrap'>
	Initial:	row nowrap
	Applies To:	flex containers
	Inherited:	Yes

 MDN documentation:

 flex-flow

 See also:

 flex-direction, flex-wrap

 flex-grow

 Sets the flex grow factor, which specifies in what ratio items grow to fill remaining space in a line.

 	Value:	<number>
	Initial:	0
	Applies To:	flex items
	Inherited:	No

 MDN documentation:

 flex-grow

 flex-shrink

 Sets the flex shrink factor, which specifies in what ratio the item shrinks when there is not enough space for all items in a line.

 	Value:	<number>
	Initial:	1
	Applies To:	flex items
	Inherited:	No

 MDN documentation:

 flex-shrink

 flex-wrap

 Specifies if and how a flex line is broken, if an item does not fit in the line anymore.

 	Value:	nowrap | wrap | wrap-reverse
	Initial:	nowrap
	Applies To:	flex containers
	Inherited:	No

 MDN documentation:

 flex-wrap

 float

 This property specifies whether a box should float to the left, right, or not at all. It also allows to to float it to the top or bottom as a page float.

 	Value:	none | left | right | inline-start | inline-end | -ro-top | -ro-bottom | footnote
	Initial:	none
	Inherited:	No

 MDN documentation:

 float

 See also:

 position

 More information:

 -ro-float-offset

 Defines a gap above top floats and below bottom floats respectively. Percentages are relative to the vertical space minus the float's height. This means that 50% positions the float to the middle and 100% positions it at the other side (and thus leaving no space for actual content).
 The property is only applicable for page floats.

 	Value:	<length> | <percentage>
	Initial:	0
	Applies To:	page floats
	Inherited:	No

 -ro-flow-from

 The 'flow-from' property makes a block container a region and associates it with a named flow.

 	Value:	none | <identifier>
	Initial:	none
	Applies To:	Non-replaced block containers.
	Inherited:	No

 	
 none

	
 The block container is not a CSS Region.

	
 <identifier>

	
 The block container becomes a CSS Region, and is ordered in a region chain according to its document order.

 More information:

 -ro-flow-into

 The 'flow-into' property can place an element or its contents into a named flow.
 Content that belongs to the same flow is laid out in regions associated with that flow.
 The 'flow-into' property neither affects the CSS cascade and inheritance nor the DOM position of an element or its contents.
 A named flow needs to be associated with one or more regions to be displayed.

 	Value:	none | <identifier> [element|content]?
	Initial:	none
	Applies To:	All elements, but not pseudo-elements such as ::first-line, ::first-letter, ::before or ::after.
	Inherited:	No

 	
 none

	
 The element is not moved to a named flow and normal CSS processing takes place.

	
 <identifier>

	
 If the keyword 'element' or neither keyword is present, the element is taken out of its parent's flow and placed into the named flow '<identifier>'.
If the keyword 'content' is present, then only the element's contents is placed into the named flow.
The values 'none', 'inherit', 'default', 'auto' and 'initial' are invalid flow names.

 More information:

 font

 The 'font' property is a shorthand property for setting 'font-style', 'font-variant', 'font-weight', 'font-stretch', 'font-size', 'line-height' and 'font-family' at the same place in the style sheet.

 	Value:	['font-style' || 'font-variant' || 'font-weight' || 'font-stretch']? 'font-size' [/ 'line-height']? 'font-family'
	Initial:	see individual properties
	Inherited:	No

 MDN documentation:

 font

 See also:

 font-family, font-size, font-stretch, font-style, font-variant, font-weight, line-height

 -ro-font-embedding-type

 This property specifies how a font configured through a ”@font-face" rule should be embedded in the resulting PDF. If the font includes multiple subsets, PDFreactor can either only embed the subset from which glyphs are being used in the document, the entire font incl. all subsets even if the document does not use glyphs from all subsets, or prevent the font from being embedded at all.

 	Value:	subset | all | none
	Initial:	subset
	Applies To:	@font-face
	Inherited:	No

 	
 subset

	
 Only the subset or subsets that have glyphs being used in this document are embedded in the resulting PDF.

	
 all

	
 All subsets of this font are embedded, regardless of whether or not glyphs from these subsets are actually being used.

	
 none

	
 The font is not embedded in the document at all, even if glyphs from this font are being used.

 font-family

 The property value is a prioritized list of font family names and/or generic family names. Unlike most other CSS properties, component values are separated by a comma to indicate that they are alternatives.

 	Value:	[<family-name> | <generic-family>]#
	Initial:	serif
	Inherited:	Yes

 MDN documentation:

 font-family

 font-size

 The font size corresponds to the em square, a concept used in typography. Note that certain glyphs may bleed outside their em squares.

 	Value:	<absolute-size> | <relative-size> | <length> | <percentage>
	Initial:	medium
	Inherited:	Yes

 MDN documentation:

 font-size

 font-size-adjust

 The font-size-adjust CSS property sets how the font size should be adjusted based on the proportions of lowercase letters.

 	Value:	<number> | none | -ro-from-font
	Initial:	none
	Inherited:	Yes

 	
 -ro-from-font

	
 Computes the x-height to font-size ratio of a particular font and sets it as the font-size-adjust value. This value will be inherited. Improves readability by ensuring that lowercase letters of text with a different font or text with a font fallback have the same height.

 MDN documentation:

 font-size-adjust

 font-stretch

 If a font-family offers additional faces with narrower (condensed) or wider (expanded) characters, this property can be used to select the best matching font face.

 	Value:	normal | ultra-condensed | extra-condensed | condensed | semi-condensed | semi-expanded | expanded | extra-expanded | ultra-expanded
	Initial:	normal
	Inherited:	Yes

 MDN documentation:

 font-stretch

 font-style

 The 'font-style' property selects between normal (sometimes referred to as "roman" or "upright"), italic and oblique faces within a font family.

 	Value:	normal | italic | oblique
	Initial:	normal
	Inherited:	Yes

 MDN documentation:

 font-style

 font-variant

 Another type of variation within a font family is the small-caps. In a small-caps font the lower case letters look similar to the uppercase ones, but in a smaller size and with slightly different proportions. The 'font-variant' property selects that font.

 	Value:	normal | small-caps
	Initial:	normal
	Inherited:	Yes

 MDN documentation:

 font-variant

 font-weight

 The 'font-weight' property specifies the weight of a font. If the font-family has a matching font face, the best match is selected. Otherwise, a bold font is synthesized.

 	Value:	normal | bold | bolder | lighter | <numerical-font-weight>
	Initial:	normal
	Inherited:	Yes

 	
 <numerical-font-weight>

	
 A number greater or equals to 1 and less or equal to 1000, where values of 400 or smaller are mapped to 'normal' and values of 500 or larger are mapped to 'bold'.

 MDN documentation:

 font-weight

 footnote-display

 Determines whether a footnote is displayed as a block element or inline element.

 	Value:	block | inline
	Initial:	block
	Inherited:	No

 	
 block

	
 The footnote element is placed in the footnote area as a block element. This is the default value.

	
 inline

	
 The footnote element is placed in the footnote area as an inline element.

 -ro-formelement-name

 Defines from which element or attribute in the document the names of the form elements are adopted to a generated PDF.

 	Value:	none | <string>
	Initial:	none
	Applies To:	Form elements
	Inherited:	No

 More information:

 gap grid-gap

 This property is a shorthand that sets row-gap and column-gap in one declaration.

 	Value:	<'row-gap'> <'column-gap'>?
	Initial:	
	Applies To:	multi-column containers, flex containers and grid containers
	Inherited:	No

 MDN documentation:

 gap

 -ro-glyph-layout-mode

 This properties allows to render text using more Open Type Font information at the cost of performance.

 	Value:	auto | speed | quality
	Initial:	auto
	Inherited:	Yes

 	
 auto

	
 Same as 'quality' except for pieces of text that are estimated not to require it, incl. most Latin text. (ligatures are not considered a requirement) or for Java versions older than 13.

	
 speed

	
 Prioritizes performance, applying True Type Font kerning, but no more complex font features.

	
 quality

	
 Enables Open Type Font kerning/positioning (required e.g. for Cambodian) and ligatures. It also causes characters in right-to-left text to be stored in PDF output in the correct order for accessibility. This impacts performance and both performance and result depend on the Java version used. Not using the latest Java version is discouraged.

 More information:

 Tagged PDF, Right-to-Left

 grid

 Sets all grid properties in a single declaration.

 	Value:	<'grid-template'> | <'grid-template-rows'> / [auto-flow && dense?] <'grid-auto-columns'>? | [auto-flow && dense?] <'grid-auto-rows'>? / <'grid-template-columns'>
	Initial:	none
	Applies To:	grid containers
	Inherited:	No

 MDN documentation:

 grid

 grid-area

 Set all four grid placement properties in a single declaration.

 	Value:	<grid-line> [/ <grid-line>]{0,3}
	Initial:	auto
	Applies To:	grid items and absolutely-positioned boxes whose containing block is a grid container
	Inherited:	No

 MDN documentation:

 grid-area

 grid-auto-columns

 Sets the size of auto generated column tracks.

 	Value:	<track-size>+
	Initial:	auto
	Applies To:	grid containers
	Inherited:	No

 MDN documentation:

 grid-auto-columns

 grid-auto-flow

 Specifies how the position of items without explicit grid placement properties is determined. Dense is slower than sparse (no dense) and should only be used if necessary.

 	Value:	[row | column] || dense
	Initial:	row
	Applies To:	grid containers
	Inherited:	No

 MDN documentation:

 grid-auto-flow

 grid-auto-rows

 Sets the size of auto generated row tracks.

 	Value:	<track-size>+
	Initial:	auto
	Applies To:	grid containers
	Inherited:	No

 MDN documentation:

 grid-auto-rows

 grid-column

 Sets the start and end column of an element inside the grid.

 	Value:	<grid-line> [/ <grid-line>]?
	Initial:	auto
	Applies To:	grid items and absolutely-positioned boxes whose containing block is a grid container
	Inherited:	No

 MDN documentation:

 grid-column

 grid-column-end

 Sets the end column of an element inside the grid.

 	Value:	<grid-line>
	Initial:	auto
	Applies To:	grid items and absolutely-positioned boxes whose containing block is a grid container
	Inherited:	No

 MDN documentation:

 grid-column-end

 grid-column-start

 Sets the start column of an element inside the grid.

 	Value:	<grid-line>
	Initial:	auto
	Applies To:	grid items and absolutely-positioned boxes whose containing block is a grid container
	Inherited:	No

 MDN documentation:

 grid-column-start

 grid-row

 Sets the start and end row of an element inside the grid.

 	Value:	<grid-line> [/ <grid-line>]?
	Initial:	auto
	Applies To:	grid items and absolutely-positioned boxes whose containing block is a grid container
	Inherited:	No

 MDN documentation:

 grid-row

 grid-row-end

 Sets the end row of an element inside the grid.

 	Value:	<grid-line>
	Initial:	auto
	Applies To:	grid items and absolutely-positioned boxes whose containing block is a grid container
	Inherited:	No

 MDN documentation:

 grid-row-end

 grid-row-start

 Sets the start row of an element inside the grid.

 	Value:	<grid-line>
	Initial:	auto
	Applies To:	grid items and absolutely-positioned boxes whose containing block is a grid container
	Inherited:	No

 MDN documentation:

 grid-row-start

 grid-template

 Sets all three grid-template properties in a single declaration.

 	Value:	none | [<'grid-template-rows'> / <'grid-template-columns'>] | [<line-names>? <string> <track-size>? <line-names>?]+ [/ <explicit-track-list>]?
	Initial:	none
	Applies To:	grid containers
	Inherited:	No

 MDN documentation:

 grid-template

 grid-template-areas

 Specifies named grid areas. They can be used in conjunction with the grid placement properties to position items in the grid.

 	Value:	none | <string>+
	Initial:	none
	Applies To:	grid containers
	Inherited:	No

 MDN documentation:

 grid-template-areas

 grid-template-columns

 Specifies the line names and track sizing functions of column tracks.

 	Value:	none | <track-list> | <auto-track-list>
	Initial:	none
	Applies To:	grid containers
	Inherited:	No

 MDN documentation:

 grid-template-columns

 grid-template-rows

 Specifies the line names and track sizing functions of row tracks.

 	Value:	none | <track-list> | <auto-track-list>
	Initial:	none
	Applies To:	grid containers
	Inherited:	No

 MDN documentation:

 grid-template-rows

 height

 This property specifies the content height of boxes.
 This property does not apply to non-replaced inline elements.
 Negative values for 'height' are illegal.

 	Value:	auto | <length> | <percentage> | min-content | max-content
	Initial:	auto
	Applies To:	all elements but non-replaced inline elements, table columns, and column groups
	Inherited:	No

 MDN documentation:

 height

 -ro-height

 This property allows the automatic resizing of form controls according to
 their content. If this property is set to auto, the form controls' height automatically adjusts according to its content.

 	Value:	auto | none
	Initial:	none
	Applies To:	Form elements
	Inherited:	No

 	
 auto

	
 Automatically adjusts the height of a form control if the contents' height exceeds the height defined for the form control.

 hyphenate-after

 This property specifies the minimum number of characters in a hyphenated word after the hyphenation character. The 'auto' value means that the UA chooses a value that adapts to the current layout.

 	Value:	<integer> | auto
	Initial:	auto
	Inherited:	Yes

 More information:

 hyphenate-before

 This property specifies the minimum number of characters in a hyphenated word before the hyphenation character. The 'auto' value means that the UA chooses a value that adapts to the current layout.

 	Value:	<integer> | auto
	Initial:	auto
	Inherited:	Yes

 More information:

 hyphenate-character

 This property specifies a string that is shown when a hyphenate-break occurs. The 'auto' value means that the user agent should find an appropriate value.

 	Value:	<string> | auto
	Initial:	auto
	Inherited:	Yes

 More information:

 hyphens

 This property controls whether hyphenation is allowed to create more soft wrap opportunities within a line of text.

 	Value:	none | manual | auto
	Initial:	manual
	Inherited:	Yes

 MDN documentation:

 hyphens

 More information:

 -ro-image-clip-path

 Specifies whether clip path metadata of images is read and applied.

 	Value:	from-image | none
	Initial:	from-image
	Inherited:	Yes

 	
 from-image

	
 Read clip path from image metadata.

	
 none

	
 Ignore clip path in image metadata.

 -ro-image-orientation

 Enables or disables the image orientation being read from the image data or overrides that orientation. Based on the orientation the image will be rotated in 90 degree increments and possibly flipped. Rotation can cause the layout width and height to be swapped.

 	Value:	from-image | none | <angle> | [<angle>? flip]
	Initial:	from-image
	Inherited:	Yes

 	
 none

	
 Ignore orientation data.

	
 from-image

	
 Read orientation data from image.

	
 <angle>

	
 Angle (rounded to 90 degree increments) overriding orientation data.

	
 flip

	
 When specified in addition to <angle> additional flip the image.

 -ro-image-recompression

 Specifies whether raster graphics should be recompressed when embedded into PDFs. Applies to image elements and background images.
 If the same image is used multiple times in the same document, the data is only embedded once. In this case when recompression is enabled the best quality setting is used. This means that if there is one occurrence of an image where this property is not set, the data of that image will not be recompressed.
 Note: Using this feature may have an impact on the conversion time of large documents.

 	Value:	auto | [<compression-function> conditional?]
	Initial:	auto
	Inherited:	No

 	
 auto

	
 Same as "jpeg() conditional".

	
 <compression-function>

	
 Defines which compression algorithm should be used, either lossless or jpeg with an optional quality parameter.

	
 conditional

	
 If specified, the compression is only applied when -ro-image-resampling is used and the image is actually resampled, else the image is embedded without forced recompression.

 See also:

 -ro-image-resampling, jpeg, lossless

 -ro-image-resampling

 Specifies an optional maximum resolution for raster graphics in the result PDF. If an image exceeds the resolution, it is resampled to match it. Applies to image elements and background images.
 If the same image is used multiple times in the same document, the data is only embedded once.
 In this case when resampling is enabled the highest resolution is used. This means that if there is one occurrence of an image where this property is not set, the data of that image will not be resampled.
 To specify the compression algorithm and the quality of the resampled image, see -ro-image-recompression (and its "conditional" flag).
 Note: Using this feature may have an impact on the conversion time of large documents.

 	Value:	none | <resolution>
	Initial:	none
	Inherited:	No

 	
 none

	
 No resampling is applied to the image.

	
 <resolution>

	
 The maximum resolution of the image in the PDF. Allowed units are dpi, dpcm and dppx.

 See also:

 -ro-image-recompression

 -ro-image-resolution

 Specifies the resolution of the image and whether the resolution should be read from the image data. A resolution different from 1dppx or 96dpi will change the inherent/natural size of the image.

 	Value:	from-image || <resolution>
	Initial:	1dppx
	Inherited:	Yes

 	
 from-image

	
 When specified the resolution is read from image metadata (allowing different resolutions for each dimension). If none is found falls back to the specified resolution or the default of 1dppx.

 initial-page

 This defines to which page a viewer application should scroll when opening this document.

 	Value:	<integer>
	Initial:	1
	Applies To:	@-ro-preferences
	Inherited:	No

 More information:

 initial-zoom

 Defines the initial zoom factor when opening the document in a viewer application.

 	Value:	auto | <percentage> | fit-page | fit-page-height | fit-page-width | fit-content | fit-content-height | fit-content-width
	Initial:	auto
	Applies To:	@-ro-preferences
	Inherited:	No

 	
 fit-page

	
 The entire page is visible.

	
 fit-page-height

	
 The page fills the view port height.

	
 fit-page-width

	
 The page fills the view port width.

	
 fit-content

	
 The content fills the complete view port.

	
 fit-content-height

	
 The content fills the view port height.

	
 fit-content-width

	
 The content fills the view port width.

 More information:

 inset-block inset-inline

 These properties set position properties (top, bottom, left, right) based on the logical directions (depending on text direction).
 While the 'inset-block' values are computed to top and bottom, the 'inset-inline' values are computed to 'left' and 'right' for ltr directions or 'right' and 'left' for rtl directions.

 	Value:	[<length> | <percentage> | auto]{1,2}
	Initial:	see individual properties
	Inherited:	No

 MDN documentation:

 inset-block, inset-inline

 More information:

 isolation

 	Value:	auto | isolate
	Initial:	auto
	Inherited:	No

 MDN documentation:

 isolation

 justify-content

 Specifies how the space between flex items along the main axis is distributed.

 	Value:	normal | stretch | space-between | space-around | space-evenly | [safe | unsafe]? [start | center | end | flex-start | flex-end | left | right]
	Initial:	normal
	Applies To:	flex containers and grid containers
	Inherited:	No

 MDN documentation:

 justify-content

 justify-items

 This property specifies the default justify-self for all of the child boxes participating in this box’s formatting context.

 	Value:	normal | stretch | [safe | unsafe]? [center | start | end | self-start | self-end | flex-start | flex-end | left | right] | legacy | legacy && [left | right | center]
	Initial:	legacy
	Inherited:	No

 MDN documentation:

 justify-items

 justify-self

 Justifies the box within its containing block along the inline/row/main axis of the alignment container.

 	Value:	auto | normal | stretch | [safe | unsafe]? [center | start | end | self-start | self-end | left | right]
	Initial:	auto
	Applies To:	block-level boxes, absolutely-positioned boxes and grid items
	Inherited:	No

 MDN documentation:

 justify-self

 -ro-keywords

 Sets the keywords in the metadata of the PDF document. Multiple values are concatenated to one string. (When applied to multiple elements the values are concatenated, separated by a comma.)

 	Value:	none | [<string> | content()]+
	Initial:	none
	Applies To:	all elements
	Inherited:	No

 	
 none

	
 Does not set a keywords.

	
 <string>

	
 Sets the specified string as keywords.

	
 content()

	
 Sets the keywords from the content of the element.

 See also:

 -ro-author, -ro-subject, -ro-title

 More information:

 left

 Like 'top', but specifies how far a box's left margin edge is offset to the right of the left edge of the box's containing block. For relatively positioned boxes, the offset is with respect to the left edge of the box itself.

 	Value:	<length> | <percentage> | auto
	Initial:	auto
	Applies To:	positioned elements
	Inherited:	No

 MDN documentation:

 left

 See also:

 inset-*

 letter-spacing

 This property specifies spacing behavior between text characters.

 	Value:	normal | <length>
	Initial:	normal
	Inherited:	Yes

 MDN documentation:

 letter-spacing

 -ro-line-break-opportunity

 Proprietary property used to customize where line breaks are allowed. It can be added to default line break behavior or replace it entirely. Two strings with a syntax similar to regex defining the content surrounding a break opportunity (the second string describing the following content can be omitted). Each string uses regex syntax without lookbehind and lookahead.
 Please note that the backslashes must be escaped with a second backslash, e.g. "\\s" instead of "\s".

 	Value:	normal || [[<whitelist>#]? [/ <blacklist>#]?]
	Initial:	normal
	Inherited:	Yes

 	
 normal

	
 Use the line break opportunities defined by unicode specifications. This is the default value. If used together with whitelist/blacklist, both the unicode rules and the custom rules apply.

	
 <whitelist>

	
 One or two space separated regex-like strings that specify what content must surround a text position in order to make that position a line break opportunity. The first string describes the content before the break position, the second describes the content after it. The second string can be omitted.

	
 <blacklist>

	
 One or two space separated regex-like strings that specify what content must surround a break opportunity candidate in order to prevent it from becoming an actual line break opportunity. The first string describes the content before the position, the second describes the content after it. The second string can be omitted. The blacklist takes precedence over the whitelist.

 More information:

 -ro-line-grid

 Specifies whether this box creates a new baseline grid for its descendants or uses the same baseline grid as its parent.

 	Value:	match-parent | create
	Initial:	match-parent
	Applies To:	block containers
	Inherited:	No

 	
 match-parent

	
 Box assumes the line grid of its parent.

	
 create

	
 Box creates a new line grid using its own font and line layout settings.

 More information:

 line-height

 On a block container element whose content is composed of inline-level elements, 'line-height' specifies the minimal height of line boxes within the element.

 	Value:	normal | <number> | <length> | <percentage>
	Initial:	normal
	Inherited:	Yes

 MDN documentation:

 line-height

 -ro-line-snap

 This property applies to all the line boxes directly contained by the element, and, when not none, causes each line box to shift until it snaps to the line grid specified by line-grid.

 	Value:	none | baseline | contain
	Initial:	none
	Inherited:	Yes

 	
 none

	
 Line boxes do not snap to the grid; they stack normally.

	
 baseline

	
 The baseline snaps to the line grid applied to the element.

	
 contain

	
 Two baselines are used to align the line box: the line box is snapped so that its central baseline is centered between two of the line grid's baselines.

 More information:

 -ro-link

 This property allows to define hyperlinks via style. Multiple values are concatenated to one URL.

 	Value:	auto | none | [<string>]+
	Initial:	auto
	Applies To:	all elements
	Inherited:	No

 	
 none

	
 The element is not a hyperlink.

	
 <string>

	
 The element is a hyperlink to the URL the <string> contains.

	
 auto

	
 The element is not a hyperlink, unless it is a QRcode, video or audio element.

 See also:

 -ro-destination-area, -ro-link-area

 More information:

 -ro-link-area

 This property can be used to specify how the clickable areas of links are determined.

 	Value:	all | all-block | content | content-block | block
	Initial:	all
	Inherited:	No

 	
 all

	
 Makes the border-areas of all elements in the subtree of the link clickable.

	
 all-block

	
 Like 'all', but merges the bounds of all areas into one clickable rectangle.

	
 content

	
 Makes the border-areas of all content elements (text, images and empty inlines) in the subtree of the link clickable.

	
 content-block

	
 Like 'content', but merges the bounds of all areas into one clickable rectangle.

	
 block

	
 Makes only the border-area of the link element itself clickable.

 See also:

 -ro-link

 More information:

 list-style

 The 'list-style' property is a shorthand notation for setting the three properties 'list-style-type', 'list-style-image', and 'list-style-position' at the same place in the style sheet.

 	Value:	<'list-style-type'> || <'list-style-position'> || <'list-style-image'>
	Initial:	see individual properties
	Applies To:	elements with 'display: list-item'
	Inherited:	Yes

 MDN documentation:

 list-style

 See also:

 list-style-image, list-style-position, list-style-type

 list-style-image

 This property sets the image that will be used as the list item marker. When the image is available, it will replace the marker set with the 'list-style-type' marker.

 	Value:	<uri> | none
	Initial:	none
	Applies To:	elements with 'display: list-item'
	Inherited:	Yes

 MDN documentation:

 list-style-image

 list-style-position

 This property specifies the position of the marker box with respect to the principal block box.

 	Value:	inside | outside
	Initial:	outside
	Applies To:	elements with 'display: list-item'
	Inherited:	Yes

 MDN documentation:

 list-style-position

 list-style-type

 This property specifies appearance of the list item marker if 'list-style-image' has the value 'none' or if the image pointed to by the URI cannot be displayed. The value 'none' specifies no marker, otherwise there are three types of marker: glyphs, numbering systems, and alphabetic systems.
 Glyphs are specified with disc, circle, and square.

 	Value:	<identifier> | none
	Initial:	disc
	Applies To:	elements with 'display: list-item'
	Inherited:	Yes

 MDN documentation:

 list-style-type

 More information:

 -ro-listitem-value

 Determine the number of an ordered list item.

 	Value:	<integer> | auto
	Initial:	auto
	Applies To:	list-item
	Inherited:	No

 	
 <integer>

	
 The number used for an ordered list item.

	
 auto

	
 The number is the number of the previous item plus one (or one if it is the first item).

 margin

 The 'margin' property is a shorthand property for setting 'margin-top', 'margin-right', 'margin-bottom', and 'margin-left' at the same place in the style sheet.

 	Value:	[<length> | <percentage> | auto]{1,4}
	Initial:	see individual properties
	Applies To:	all elements except elements with table display types other than table-caption, table and inline-table
	Inherited:	No

 MDN documentation:

 margin

 See also:

 margin-*-*, margin-*

 margin-block margin-inline

 These properties set margins based on the logical directions (depending on text direction).
 The first value of 'margin-block' sets the margin-top, the second the 'margin-bottom'. The values of margin-inline sets 'margin-left' and 'margin-right' in BiDi-dependent order.
 If only one value is given, it applies to both the start and end edges.

 	Value:	[<length> | <percentage> | auto]{1,2}
	Initial:	
	Inherited:	No

 MDN documentation:

 margin-block, margin-inline

 -ro-margin-inline-start -ro-margin-inline-end -ro-margin-block-start -ro-margin-block-end margin-inline-start margin-inline-end margin-block-start margin-block-end

 These properties set margins based on the logical directions (depending on text direction).
 Block start and end correspond to top and bottom. Inline start and end correspond to left and right or right and left, depending on the BiDi text direction.

 	Value:	<length> | <percentage> | auto
	Initial:	0
	Inherited:	No

 MDN documentation:

 margin-inline-start, margin-inline-end, margin-block-start, margin-block-end

 See also:

 margin-*

 More information:

 margin-top margin-right margin-bottom margin-left

 These properties set the top, right, bottom, and left margin of a box.

 	Value:	<length> | <percentage> | auto
	Initial:	0
	Applies To:	all elements except elements with table display types other than table-caption, table and inline-table
	Inherited:	No

 MDN documentation:

 margin-top, margin-right, margin-bottom, margin-left

 See also:

 margin-*-*

 -ro-marks

 Adds the specified printer marks inside the page's MediaBox.

 	Value:	none | [trim || bleed || registration]
	Initial:	none
	Applies To:	page context
	Inherited:	No

 	
 none

	
 No marks are added to the page.

	
 trim

	
 Adds trim line marks to the four corners of the page.

	
 bleed

	
 Adds bleed line marks to the four corners of the page.

	
 registration

	
 Adds registration marks to the four sides of the page.

 See also:

 -ro-marks-color, -ro-marks-width, -ro-media-size

 More information:

 Deprecated!

 Use marks instead.

 marks

 Adds the specified printer marks inside the page's MediaBox.

 	Value:	none | [crop || cross || -ro-bleed]
	Initial:	none
	Applies To:	page context
	Inherited:	No

 	
 none

	
 No marks are added to the page.

	
 crop

	
 Adds trim line marks to the four corners of the page.

	
 -ro-bleed

	
 Adds bleed line marks to the four corners of the page.

	
 cross

	
 Adds registration marks to the four sides of the page.

 More information:

 -ro-marks-color

 Sets the color of the printer marks.

 	Value:	<color>
	Initial:	cmyk(100%, 100%, 100%, 100%)
	Applies To:	page context
	Inherited:	No

 See also:

 marks

 More information:

 -ro-marks-width

 Sets the width of the printer marks.

 	Value:	none | <length>
	Initial:	0.5pt
	Applies To:	page context
	Inherited:	No

 See also:

 marks

 More information:

 max-block-size max-inline-size

 These properties set max-height and max-width based on the logical directions (depending on text direction).
 The property 'max-block-size' sets 'max-height', while 'max-inline-size' sets 'max-width'

 	Value:	<'max-width'>
	Initial:	none
	Applies To:	same as width and height
	Inherited:	No

 MDN documentation:

 max-block-size, max-inline-size

 See also:

 max-height, max-width

 max-height

 This property allows authors to limit box heights.

 	Value:	none | <length> | <percentage> | min-content | max-content
	Initial:	none
	Applies To:	all elements but non-replaced inline elements, table columns, and column groups
	Inherited:	No

 	
 <length>

	
 Specifies a fixed maximum computed height.

	
 <percentage>

	
 Specifies a percentage for determining the used value. The percentage is calculated with respect to the height of the generated box's containing block. If the height of the containing block is not specified explicitly (i.e., it depends on content height), and this element is not absolutely positioned, the percentage value is treated as 'none'.

	
 none

	
 No limit on the height of the box.

	
 min-content

	
 Behaves like 'none'.

	
 max-content

	
 Behaves like 'none'

 MDN documentation:

 max-height

 See also:

 min-height

 max-width

 This property allows authors to constrain content widths to a maximum.

 	Value:	none | <length> | <percentage> | min-content | max-content
	Initial:	none
	Applies To:	all elements but non-replaced inline elements, table rows, and row groups
	Inherited:	No

 MDN documentation:

 max-width

 See also:

 min-width

 -ro-media-size

 Specifies the size of the MediaBox, one of the PDF page boxes.
 The MediaBox defines an oversized paper sheet that allows to add a bleed area, marks and color bars around the normal page content.
 This property works the same way as the size property does.

 	Value:	none | <length>{1,2} | auto | [<page-size> || [portrait | landscape]]
	Initial:	none
	Applies To:	page context
	Inherited:	No

 See also:

 bleed, -ro-colorbar-*, marks, size

 More information:

 min-block-size min-inline-size

 These properties set min-height and min-width based on the logical directions (depending on text direction).
 The propery 'min-block-size' sets the 'min-height', while 'min-inline-size' sets 'min-width'.

 	Value:	<'min-width'>
	Initial:	auto
	Applies To:	same as width and height
	Inherited:	No

 MDN documentation:

 min-block-size, min-inline-size

 See also:

 min-height, min-width

 min-height

 This property allows authors to set a minimum box height.

 	Value:	auto | <length> | <percentage> | min-content | max-content
	Initial:	auto
	Applies To:	all elements but non-replaced inline elements, table columns, and column groups
	Inherited:	No

 MDN documentation:

 min-height

 See also:

 max-height

 min-width

 This property allows authors to constrain content widths to a minimum value.

 	Value:	auto | <length> | <percentage> | min-content | max-content
	Initial:	auto
	Applies To:	all elements but non-replaced inline elements, table rows, and row groups
	Inherited:	No

 MDN documentation:

 min-width

 See also:

 max-width

 mix-blend-mode

 	Value:	normal | multiply | screen | overlay | darken | lighten | color-dodge | color-burn | hard-light | soft-light | difference | exclusion | hue | saturation | color | luminosity
	Initial:	normal
	Inherited:	No

 MDN documentation:

 mix-blend-mode

 negative

 When defining custom counter styles, the negative descriptor lets you alter the representations of negative counter values, by providing a way to specify symbols to be appended or prepended to the counter representation when the value is negative.

 	Value:	[<string> | <identifier>] [<string> | <identifier>]?
	Initial:	"-"
	Applies To:	@counter-style
	Inherited:	No

 MDN documentation:

 negative

 object-fit

 Defines how the content of a replaced element, e.g. an image, fits into its box.

 	Value:	fill | contain | cover | none | scale-down
	Initial:	fill
	Applies To:	Replaced Elements
	Inherited:	No

 MDN documentation:

 object-fit

 See also:

 object-position

 object-position

 Determines the alignment of a replaced element, e.g. an image, inside its box.
 Note: This property has no effect unless "object-fit" is set to a non-default value.

 	Value:	<position>
	Initial:	50% 50%
	Applies To:	replaced elements
	Inherited:	No

 MDN documentation:

 object-position

 See also:

 object-fit

 -ro-object-slice

 Allows block images to be split at page breaks.

 	Value:	none | auto | avoid
	Initial:	none
	Applies To:	Block replaced-elements
	Inherited:	No

 	
 none

	
 Default. Images are not split.

	
 auto

	
 Images are split at page breaks.

	
 avoid

	
 Images are split at page breaks, unless they fit on the next page.

 More information:

 Pagination of Images

 -ro-offset-inline-start -ro-offset-inline-end -ro-offset-block-start -ro-offset-block-end inset-inline-start inset-inline-end inset-block-start inset-block-end

 These properties set the position properties (top, bottom, left, right) based on the logical directions (depending on text direction).
 Block start and end correspond to top and bottom. Inline start and end correspond to left and right or right and left, depending on the BiDi text direction.

 	Value:	<length> | <percentage> | auto
	Initial:	auto
	Applies To:	positioned elements
	Inherited:	No

 MDN documentation:

 inset-inline-start, inset-inline-end, inset-block-start, inset-block-end

 See also:

 bottom, left, right, top

 More information:

 opacity

 Specifies the transparency of an element.

 	Value:	<alphavalue>
	Initial:	1
	Inherited:	No

 MDN documentation:

 opacity

 order

 Specifies in which order the flex/grid items are laid out in their container.

 	Value:	<integer>
	Initial:	0
	Applies To:	flex items and grid items
	Inherited:	No

 MDN documentation:

 order

 orphans

 The 'orphans' property specifies the minimum number of lines in a block container that must be left at the bottom of a page.
 Only positive values are allowed.

 	Value:	<integer>
	Initial:	2
	Applies To:	block container elements
	Inherited:	Yes

 MDN documentation:

 orphans

 More information:

 outline

 The 'outline' property is a shorthand property, and sets all three of 'outline-style', 'outline-width', and 'outline-color'.

 	Value:	['outline-color' || 'outline-style' || 'outline-width']
	Initial:	see individual properties
	Inherited:	No

 MDN documentation:

 outline

 See also:

 border, outline-color, outline-style, outline-width

 outline-color

 The 'outline-color' sets the color of an outline. The value 'invert' is not supported.

 	Value:	<color>
	Initial:	currentColor
	Inherited:	No

 MDN documentation:

 outline-color

 See also:

 border-color

 More information:

 outline-offset

 Specifies the offset between the outline and the border edge. May be negative.

 	Value:	<length>
	Initial:	0
	Inherited:	No

 MDN documentation:

 outline-offset

 See also:

 outline

 outline-style

 The 'outline-style' property accepts the same values as 'border-style', except that 'hidden' is not a legal outline style.

 	Value:	<border-style>
	Initial:	none
	Inherited:	No

 MDN documentation:

 outline-style

 See also:

 border-style

 outline-width

 The 'outline-width' property accepts the same values as 'border-width'.

 	Value:	<border-width>
	Initial:	medium
	Inherited:	No

 MDN documentation:

 outline-width

 See also:

 border-width

 overflow

 Shorthand for overflow-x and overflow-y

 	Value:	visible | hidden | clip | auto | scroll
	Initial:	visible
	Applies To:	block containers
	Inherited:	No

 MDN documentation:

 overflow

 See also:

 -ro-overflow-clip-margin, overflow-x, overflow-y

 -ro-overflow-clip-margin

 When "overflow: clip" is set for an element this property specifies how the clipping area is determined, starting with one of three boxes and adding an offset. The area is affected by border-radius.

 	Value:	[content-box | padding-box | border-box] || <length>
	Initial:	0px
	Inherited:	No

 	
 content-box | padding-box | border-box

	
 Specifies the box of the element to use as the basis of the clip area. The default is padding-box.

	
 <length>

	
 Optionally increases the size of the clipping area in all directions. The value may not be negative. The defaults is 0.

 MDN documentation:

 overflow-clip-margin

 See also:

 overflow

 overflow-wrap

 This property specifies whether the UA may arbitrarily break within a word to prevent overflow when an otherwise unbreakable string is too long to fit within the line box. It only has an effect when 'white-space' allows wrapping. The difference between 'break-word' and 'anywhere' is that only the latter influences layouts that depend on the minimum sizes of elements.

 	Value:	normal | break-word | anywhere
	Initial:	normal
	Inherited:	Yes

 MDN documentation:

 overflow-wrap

 overflow-x overflow-y

 Specify whether overflowing content of the box is visible or clipped. Additionally, setting values other than the default 'visible' makes the box a block formatting context, which changes layout behaviors like margin collapsing and baseline alignment. If the two values differ the box is treated as 'auto'. Using the 'overflow' shorthand is recommended.

 	Value:	visible | hidden | clip | auto | scroll
	Initial:	visible
	Applies To:	block containers
	Inherited:	No

 	
 visible

	
 Overflowing content is visible and the box is not made a block formatting context.

	
 hidden

	
 Overflowing content is clipped and the box is made a block formatting context.

	
 clip

	
 Overflowing content is clipped and the box is made a block formatting context. In contrast to 'hidden' (and 'auto'), setting this value still allows the box to be aligned by its baseline.

	
 auto

	
 Overflowing content is clipped and the box is made a block formatting context.

	
 scroll

	
 Overflowing content is visible in paged layouts and clipped otherwise, however the box is made a block formatting context in any case.

 MDN documentation:

 overflow-x, overflow-y

 See also:

 overflow

 pad

 The pad descriptor can be used with custom counter style definitions when you need the marker representations to have a minimum length.

 	Value:	<integer> && [<string> | <identifier>]
	Initial:	0 ""
	Applies To:	@counter-style
	Inherited:	No

 MDN documentation:

 pad

 padding

 The 'padding' property is a shorthand property for setting 'padding-top', 'padding-right', 'padding-bottom', and 'padding-left' at the same place in the style sheet.

 	Value:	<padding-width>{1,4}
	Initial:	see individual properties
	Applies To:	all elements except table-row-group, table-header-group, table-footer-group, table-row, table-column-group and table-column
	Inherited:	No

 MDN documentation:

 padding

 See also:

 padding-*-*, padding-*

 padding-block padding-inline

 These properties set paddings based on the logical directions (depending on text direction).
 The first value of padding-block sets padding-top, and the second value set padding-bottom. The values of padding-inline set padding-left and padding-right in BiDi-dependent order.
 If only one value is given, it applies to both the start and end edges.

 	Value:	<padding-width>{1,2}
	Initial:	0
	Inherited:	No

 MDN documentation:

 padding-block, padding-inline

 More information:

 -ro-padding-inline-start -ro-padding-inline-end -ro-padding-block-start -ro-padding-block-end padding-inline-start padding-inline-end padding-block-start padding-block-end

 These properties set paddings based on the logical directions (depending on text direction).
 Block start and end correspond to top and bottom. Inline start and end correspond to left and right or right and left, depending on the BiDi text direction.

 	Value:	<padding-width>
	Initial:	0
	Inherited:	No

 MDN documentation:

 padding-inline-start, padding-inline-end, padding-block-start, padding-block-end

 See also:

 padding-*

 More information:

 padding-top padding-right padding-bottom padding-left

 These properties set the top, right, bottom, and left padding of a box.

 	Value:	<padding-width>
	Initial:	0
	Applies To:	all elements except table-row-group, table-header-group, table-footer-group, table-row, table-column-group and table-column
	Inherited:	No

 MDN documentation:

 padding-top, padding-right, padding-bottom, padding-left

 See also:

 padding-*-*

 page

 This property is used to specify a particular type of page (called a named page) on which an element must be displayed. If necessary, a forced page break is introduced and a new page generated of the specified type.

 	Value:	auto | <identifier>
	Initial:	auto
	Applies To:	boxes that create class 1 break points
	Inherited:	No

 	
 <identifier>

	
 The name of a particular page type. Page type names are case-sensitive identifiers.

 More information:

 ,

 page-break-before page-break-after

 Shorthand for the 'break-before' and 'break-after' properties.

 	Value:	auto | always | avoid | left | right
	Initial:	auto
	Applies To:	block-level elements
	Inherited:	No

 MDN documentation:

 page-break-before, page-break-after

 See also:

 break-before, break-after

 page-break-inside

 Shorthand for the 'break-inside' property.

 	Value:	avoid | auto
	Initial:	auto
	Applies To:	block-level elements
	Inherited:	No

 MDN documentation:

 page-break-inside

 See also:

 break-inside

 page-layout

 Defines the view mode that is initially used to view the document.
 The property values have some synonyms: Instead of "1" and "2", "single", "one" and "two" can be used. Page and column are also valid in their plural forms.

 	Value:	auto | 1 column | 2 column | 1 page | 2 page
	Initial:	auto
	Applies To:	@-ro-preferences
	Inherited:	No

 More information:

 pages-counter-offset

 An optional offset to the value of the "pages" counter, e.g. "-1" to not count the cover page.

 	Value:	<integer>
	Initial:	0
	Applies To:	@-ro-preferences
	Inherited:	No

 More information:

 ,

 -ro-passdown-styles

 The -ro-passdown-styles property controls how style is passed down from an embedding document to an embedded document.
 Counters or Named Strings from the embedding document will remain available to the embedded document, independent of the value set

 	Value:	auto | all | stylesheets-only | none
	Initial:	auto
	Applies To:	iframe, @page
	Inherited:	No

 	
 all

	
 Default value, all inheritable inline styles and all style sheets passed down to the embedded document.

	
 stylesheets-only

	
 Styles that have been set via the style-attribute (inline styles) are ignored,
but the style sheets of the embedding document are passed down.

	
 none

	
 Styles are not passed down to the embedded document.

	
 auto

	
 Whether the styles are passed down or not depends on the element (e.g. the styles are only passed down if the iframe is set to be seamless).

 More information:

 ,

 -ro-pdf-attachment-description

 The description of the attachment. If this is not specified the name is used.

 	Value:	none | <string>
	Initial:	none
	Inherited:	No

 More information:

 -ro-pdf-attachment-location

 Specifies whether the attachment is related to the area of the element.

 	Value:	element | document
	Initial:	element
	Inherited:	No

 	
 element

	
 The attachment is related to the area of the element. Viewers may show a marker near that area.

	
 document

	
 The file is attached to the document with no relation to the element.

 More information:

 -ro-pdf-attachment-name

 The file name associated with the attachment. It is recommended to specify the correct file extension. If this is not specified the name is derived from the URL.

 	Value:	none | <string>
	Initial:	none
	Inherited:	No

 More information:

 -ro-pdf-attachment-url

 A URL pointing to the file to be embedded. This URL can be relative and may be specified via a URL function or as a string. A string value of "#" will embed the source document.

 	Value:	none | <url> | <string>
	Initial:	none
	Inherited:	No

 More information:

 -ro-pdf-bookmark-level

 Using this property, one can structure the specified elements within the bookmark view of the PDF viewer. The elements are ordered in ascending order. The element with the lowest bookmark level is on top of the bookmark hierarchy (similar to HTML headlines).

 	Value:	none | <integer>
	Initial:	none
	Inherited:	No

 More information:

 Deprecated!

 Use bookmark-level instead.

 -ro-pdf-form-field-flags

 For PDF form and signature fields allows specifying the flags read-only, required and no-export. For text fields allows specifying multi-line, no-scroll and rich-text.

 	Value:	none | [multi-line || no-export || no-scroll || read-only || required || rich-text]
	Initial:	none
	Applies To:	Form elements
	Inherited:	No

 	
 multi-line

	
 Allows text field content to occupy multiple lines. This is enabled by default for "textarea" elements.

	
 no-export

	
 Prevents the contents of the form field to be exported.

	
 no-scroll

	
 Disables horizontal scrolling inside a text field. This will also limit how much text content can be input in the field.

	
 read-only

	
 Prevents the form field from being filled or changed by user input.

	
 required

	
 Marks the form field as "required" which might be evaluated by PDF viewers or third party applications.

	
 rich-text

	
 Allows the user to apply rich text formatting to the text field's contents.

 See also:

 -ro-pdf-format, -ro-pdf-signature-field-name

 More information:

 -ro-pdf-form-field-maxlength

 Limits the amount of content that can be input in a PDF form field.

 	Value:	none | <integer>
	Initial:	none
	Applies To:	Form elements
	Inherited:	No

 	
 <integer>

	
 Specifies the maximum number of characters that the user can input.

 More information:

 -ro-pdf-format

 This property converts form elements to interactive PDF forms.

 	Value:	none | pdf
	Initial:	none
	Applies To:	Form elements
	Inherited:	No

 	
 none

	
 The form element is not converted.

	
 pdf

	
 The form element is converted to an AcroForm.

 See also:

 -ro-pdf-form-field-flags

 More information:

 -ro-pdf-overprint -ro-pdf-overprint-content

 Using the properties -ro-pdf-overprint and -ro-pdf-overprint-content you can specify the overprint properties of elements and their content as either none, mode0 or mode1 (zero overprint mode). The default of auto does not change the mode for this element.
 -ro-pdf-overprint affects the entire element, while -ro-pdf-overprint-content only affects the content of the element (not its decorations, like borders and backgrounds). In both cases the children of the element are affected entirely, unless overprint styles are applied to them as well via a non-auto value.

 	Value:	auto | none | mode0 | mode1
	Initial:	auto
	Inherited:	No

 	
 auto

	
 No overprinting mode is specified. In general this means the mode is not changed compared to the parent.

	
 none

	
 Disables overprinting.
Painting a new color, no matter in which color space, causes unspecified colorants to be erased at the corresponding positions.
This means that in any area, only the color that was painted last is visible.

	
 mode0

	
 Standard overprint mode, also known as "OPM 0". In this mode source color component values replace values that have been previously painted for the corresponding device colorants, regardless what the new values are.

	
 mode1

	
 Illustrator overprint mode, also known as "OPM 1" or "nonzero overprint mode". When the overprint mode is 1, tint values of 0.0 for source color components do not change the corresponding components of previously painted colors.

 More information:

 -ro-pdf-page-rotation

 When set to a value other than 'none' flags the page to be rotated by the viewer. This rotation only support 90° increments. The value represents the side that the original top side should be on after rotation. 'start' and 'end' are based on the reading 'direction', 'inside' and 'outside' on whether the page is left or right. When two values are set the first is used for landscape pages and the second for portrait ones.

 	Value:	[none | left | right | start | end | inside | outside | bottom]{1,2}
	Initial:	none
	Applies To:	page context
	Inherited:	No

 pdf-script-action

 Sets a PDF script that is executed when the PDF is opened by a viewer application, that supports PDF scripts (e.g. Adobe Reader) and it triggers the specified event.
 The CSS property has a higher priority than the API method. This means, that the values set with this property will override scripts which are registered on the same event, but were set via the PDFreactor API method setPdfScriptAction().

 	Value:	none | [<string> <event>?]#
	Initial:	none
	Applies To:	@-ro-preferences
	Inherited:	No

 	
 <string>

	
 A JavaScript source string that should be executed by the PDF viewer application, after the PDF has been opened.

	
 <event>

	
 The trigger event on which the specified script is executed.
Possible values are: open, close, before-save, after-save, before-print and after-print.
Default value is open.

 More information:

 pdf-shape-optimization

 Sets whether shapes in the converted PDF should be optimized for certain behavior.

 	Value:	none | visual
	Initial:	visual
	Applies To:	@-ro-preferences
	Inherited:	No

 	
 visual

	
 Enable visual optimization. Shapes are written to the PDF in a way to ensure a consistent look in certain PDF viewers. Without these modifications there may be different anti-aliasing for certain shapes.

	
 none

	
 Disable all shape optimizations.

 -ro-pdf-signature-field-lock

 Specifies whether a signature field will lock form elements as well as which ones.

 	Value:	[none | all] [except <string>#]?
	Initial:	none
	Applies To:	Elements with a PDF signature field
	Inherited:	No

 	
 none

	
 Signing the field does not lock any form elements.

	
 all

	
 Signing the field locks all form elements in the document.

	
 except

	
 When followed by a list of strings, those are exceptions from 'none' or 'all', locking those fields or excluding them from locking respectively.

 See also:

 -ro-pdf-signature-field-name

 -ro-pdf-signature-field-name

 Specifies whether PDF signature field will be created for this elements as well as its name.

 	Value:	none | <string>
	Initial:	none
	Inherited:	No

 	
 none

	
 No PDF signature field is created.

	
 <string>

	
 A PDF signature field with the specified name is created. (names should be unique)

 See also:

 -ro-pdf-form-field-flags, -ro-pdf-signature-field-lock

 -ro-pdf-tag-actual-text

 Used for PDF tagging. The text to be used for PDF tagging instead of the text content of the element. Useful for example to allow assistive technology to properly process stylized names.

 	Value:	none | <string>
	Initial:	none
	Inherited:	No

 	
 none

	
 Does not add an actualText entry to the PDF tag.

	
 <string>

	
 Adds an actualText entry to the PDF tag using the specified string as value.

 More information:

 -ro-pdf-tag-table-summary

 Used for PDF tagging. Summary for a table. Highly recommended for tables without a caption.

 	Value:	none | <string>
	Initial:	none
	Inherited:	No

 	
 none

	
 The summary for the table is determined automatically, looking for a caption or a directly preceding heading.

	
 <string>

	
 Adds a summary to the PDF tag of the table using the string as value.

 More information:

 -ro-pdf-tag-type

 Used for PDF tagging. Allows overriding the automatic determination of the PDF tag for this element.

 	Value:	auto | none | artifact | <string>
	Initial:	auto
	Inherited:	No

 	
 auto

	
 The PDF tag is determined from the layout information.

	
 none

	
 No PDF tag is created for this element. This does not affect its child elements.

	
 artifact

	
 Instead of a PDF tag an artifact is created for the element. It and its child elements are not considered content of the document.

	
 <string>

	
 The name of the PDF tag to create for the element.

 More information:

 place-content

 The shorthand property for 'align-content' and 'justify-content'. If the second value is omitted, the first value is used for 'justify-content'. If that value would be invalid, 'start' is used instead.

 	Value:	<'align-content'> <'justify-content'>?
	Initial:	normal
	Applies To:	multi-line flex containers
	Inherited:	No

 MDN documentation:

 place-content

 place-items

 The shorthand property for 'align-items' and 'justify-items'. If the second value is omitted, the first is used for justify-items.

 	Value:	<'align-items'> <'justify-items'>?
	Initial:	
	Inherited:	No

 MDN documentation:

 place-items

 place-self

 The shorthand property for 'align-self' and 'justify-self'. If the second value is omitted, the first value is used for 'justify-self'.

 	Value:	<'align-self'> <'justify-self'>?
	Initial:	auto
	Inherited:	No

 MDN documentation:

 place-self

 position

 The 'position' and 'float' properties determine which of the positioning algorithms is used to calculate the position of a box.

 	Value:	static | relative | absolute | fixed | running(<identifier>)
	Initial:	static
	Inherited:	No

 	
 running(<identifier>) ☛

	
 Moves the element out of the normal flow and into a page margin box as a running header or footer. The page margin box needs to specify the element function with the same <identifier> used for the running element to display it.

 MDN documentation:

 position

 See also:

 float

 More information:

 -ro-position-origin

 For positioned elements within a page, optionally changes the containing block to a specified box of the page: content-box, padding-box, border-box, -ro-page-box (this is the margin or trim box), -ro-bleed-box. This affects the inset properties (top, right, bottom, left) as well as percentage widths and heights.

 	Value:	normal | <box>
	Initial:	normal
	Applies To:	positioned elements
	Inherited:	No

 More information:

 prefix

 The prefix descriptor of the @counter-style rule specifies content that will be prepended to the marker representation.

 	Value:	[<string> | <identifier>]
	Initial:	""
	Applies To:	@counter-style
	Inherited:	No

 MDN documentation:

 prefix

 -ro-qrcode-errorcorrectionlevel

 Deprecated in favor of new barcode functionality. Sets the error correction level of the QR code.

 	Value:	L | M | Q | H
	Initial:	L
	Applies To:	QR Code elements
	Inherited:	No

 	
 L

	
 Low level error correction. Up to 7% damaged data can be restored.

	
 M

	
 Medium level error correction. Up to 15% damaged data can be restored.

	
 Q

	
 Quartile level error correction. Up to 25% damaged data can be restored.

	
 H

	
 High level error correction. Up to 30% damaged data can be restored.

 Deprecated!

 Use -ro-barcode instead.

 -ro-qrcode-forcedcolors

 Deprecated in favor of new barcode functionality. Defines whether the colors of the QR code are black and white or based on the text color and the background.

 	Value:	normal | none
	Initial:	normal
	Applies To:	QR Code elements
	Inherited:	No

 	
 normal

	
 QR code is black on white.

	
 none

	
 Instead of black, the value of the CSS property color is used to paint the squares. The background is visible instead of the white squares.

 Deprecated!

 Use -ro-barcode instead.

 -ro-qrcode-quality

 Deprecated in favor of new barcode functionality. By default, The QR code is built from multiple squares. This method is fast and
 looks correct in print. However, in PDF viewers on screen the edges of neighboring squares may be visible.

 	Value:	normal | high
	Initial:	normal
	Applies To:	QR Code elements
	Inherited:	No

 	
 normal

	
 The QR code is built from multiple squares.

	
 high

	
 The squares are combined into one object, ensuring a seamless look, at the cost of performance.

 Deprecated!

 Use -ro-barcode instead.

 -ro-qrcode-quietzonesize

 Deprecated in favor of new barcode functionality. Sets the size of the quiet (empty) zone around the QR code in modules (QR
 code "square" widths).

 	Value:	<integer>
	Initial:	1
	Applies To:	QR Code elements
	Inherited:	No

 	
 <integer>

	
 Possible values are 0 (no quiet zone) and positive integers.

 Deprecated!

 Use -ro-barcode instead.

 -ro-radiobuttonelement-group

 Defines the group name of radio buttons. In most cases, it is used with the attr-function. This is done automatically in HTML documents.

 	Value:	none | <string>
	Initial:	none
	Applies To:	Form elements
	Inherited:	No

 More information:

 range

 When defining custom counter styles, the range descriptor lets the author specify a range of counter values over which the style is applied.

 	Value:	[[<integer> | infinite]{2}]# | auto
	Initial:	auto
	Applies To:	@counter-style
	Inherited:	No

 MDN documentation:

 range

 -ro-rasterization

 This property configures in which cases SVGs and Canvas elements should be rasterized. It may disable some functionalities of those elements to avoid that. (Canvas shadows are converted into separate images, not affecting other parts of the Canvas, for both 'fallback' and 'avoid')

 	Value:	fallback | avoid | always
	Initial:	fallback
	Applies To:	SVG and Canvas elements
	Inherited:	No

 	
 fallback

	
 The SVG or Canvas is only rasterized when it uses features that are not supported by PDF vector graphics: masks, filters or non-default composites for SVG; non-default composites and ImageData access for Canvas.

	
 avoid

	
 Avoids rasterization of the entire SVG or Canvas by disabling functionality that is not supported by PDF vector graphics.

	
 always

	
 Rasterizes the Canvas in any case. (does not apply to SVG)

 More information:

 ,

 -ro-rasterization-max-size

 Defines a maximum amount of pixels a rasterization image may have. If the limit would be exceeded, the image resolution is reduced. This property can be used to reduce the required memory for rasterized content.

 	Value:	auto | none | <number>
	Initial:	auto
	Inherited:	No

 	
 auto

	
 The default limit. Behaves the same as if the value was 2.

	
 none

	
 Disables the limit. This should be used with caution, especially if it is combined with "-ro-rasterization-supersampling", as large images have a significant impact on the required memory.

	
 <number>

	
 A number greater than zero which represents the maximum amount of pixels in millions (megapixels).

 See also:

 box-shadow, filter, -ro-rasterization-supersampling, text-shadow

 -ro-rasterization-supersampling

 This property configures the resolution of the rasterization of SVGs and Canvas elements or elements with a CSS filter, box-shadows or text-shadows set. Higher resolution factors increase the quality of the image, but also increase the conversion time and the size of the output documents.

 	Value:	<integer>
	Initial:	2
	Applies To:	Rasterized elements (see description)
	Inherited:	No

 	
 <integer>

	
 The resolution of the rasterization is 96dpi multiplied by this factor.
For example, a value of 2 means 192dpi.
Accepted values are all positive integers, however, canvas will clip values larger than 4.

 More information:

 ,

 -ro-replacedelement

 Turns an element into a so called 'replaced element' that displays an image or other external or embedded content.

 	Value:	none | image | barcode | qrcode | embedded-svg
	Initial:	none
	Inherited:	No

 	
 image

	
 Creates an image replaced element. Used in combination with -ro-source.

	
 barcode

	
 Creates a barcode replaced element. Used in combination with -ro-barcode-type.

	
 qrcode

	
 Creates a legacy QR code replaced element. The QR code is read from an existing "href" attribute or the text content of the element.

	
 embedded-svg

	
 Creates an SVG replaced element from embedded SVG content.

 See also:

 -ro-source

 More information:

 right

 Like 'top', but specifies how far a box's right margin edge is offset to the left of the right edge of the box's containing block. For relatively positioned boxes, the offset is with respect to the right edge of the box itself.

 	Value:	<length> | <percentage> | auto
	Initial:	auto
	Applies To:	positioned elements
	Inherited:	No

 MDN documentation:

 right

 See also:

 inset-*

 row-gap grid-row-gap

 Sets the gap between rows.

 	Value:	<length> | <percentage> | normal
	Initial:	normal
	Applies To:	grid containers
	Inherited:	No

 MDN documentation:

 row-gap

 -ro-rowspan

 The property to determine the row span of a cell. The content contains the number of rows spanned by this cell.

 	Value:	<integer>
	Initial:	1
	Applies To:	table-cell elements
	Inherited:	No

 -ro-scale-content

 This property sets an optional scaling factor for the content. Please note that the value is taken from the first page and applied uniformly to the entire document.

 	Value:	none | auto | <percentage>
	Initial:	none
	Applies To:	page context (of first page)
	Inherited:	No

 	
 <percentage>

	
 A percent value which is treated as a scaling factor for the content.

	
 auto

	
 The scale factor is determined based on the content of the document, for the purpose of shrink-to-fit.
It is ensured that no block overflows its respective page content width or height. (The entire document is analyzed to determine the required factor.)

 More information:

 size

 This property specifies the target size and orientation of the page box's containing block. In the general case, where one page box is rendered onto one page sheet, the 'size' property also indicates the size of the destination page sheet.

 	Value:	auto | <length>{1,2} | [<page-size> || [portrait | landscape]]
	Initial:	auto
	Applies To:	page context
	Inherited:	No

 	
 auto

	
 The page box will be set to a size and orientation chosen by the UA. In the usual case, the page box size and orientation is chosen to match the target media sheet.

	
 landscape

	
 Specifies that the page's content be printed in landscape orientation. The longer sides of the page box are horizontal. If a '<page-size>' is not specified, the size of the page sheet is chosen by the UA.

	
 portrait

	
 Specifies that the page's content be printed in portrait orientation. The shorter sides of the page box are horizontal. If a '<page-size>' is not specified, the size of the page sheet is chosen by the UA.

	
 <length>

	
 The page box will be set to the given absolute dimension(s). If only one length value is specified, it sets both the width and height of the page box (i.e., the box is a square). If two length values are specified, the first establishes the page box width, and the second the page box height. Values in units of 'em' and 'ex' refer to the page context's font. Negative lengths are illegal.

	
 <page-size>

	
 A page size can be specified using one of the following media names. This is the equivalent of specifying the '<page-size>' using length values. The definition of the media names comes from Media Standardized Names.
A5, A4, A3, B5, B4, letter, legal, ledger

 More information:

 ,

 -ro-source

 Specifies the URL of an image. Used in combination with -ro-replacedelement. This is done automatically in HTML documents.

 	Value:	none | <url> | [<string>]+
	Initial:	none
	Inherited:	No

 See also:

 -ro-replacedelement

 More information:

 -ro-source-area

 Specifies which area of a PDF page should be embedded as an image. Used in combination with -ro-source. Possible values are 'auto' as well as the strings "trim", "crop", "art", "bleed" and "media". The strings set the area to the specified PDF page box. 'auto' has the same effect as "media". The fallback behavior when the specified page box does not exist is 'auto'.

 	Value:	auto | <string>
	Initial:	auto
	Inherited:	No

 More information:

 -ro-source-page

 Specifies which page of a PDF should be embedded as an image. Used in combination with -ro-source.

 	Value:	<integer>
	Initial:	1
	Inherited:	No

 	
 <integer>

	
 The number of the page that is shown, with 1 being the first page. Negative numbers count from the document end, with -1 being the last page. A value of 0 is treated like the default value, which is 1.

 More information:

 string-set

 The 'string-set' property accepts a comma-separated list of named strings. Each named string is followed by a content list that specifies which text to copy into the named string. Whenever an element with value of 'string-set' different from 'none' is encountered, the named strings are assigned their respective value.

 	Value:	[<identifier> [<string> | <named-string> | <quote> | counter() | counters() | content() | target-text() | target-counters() | target-counter()]+]# | none
	Initial:	none
	Inherited:	No

 	
 <string>

	
 a string, e.g. "foo"

	
 <counter>

	
 counter() or counters() function

	
 <content> ☛

	
 the 'content()' function returns the content of elements and pseudo-elements.

 More information:

 -ro-subject

 Sets the subject in the metadata of the PDF document. Multiple values are concatenated to one string. (When applied to multiple elements the values are concatenated, separated by a comma.)

 	Value:	none | [<string> | content()]+
	Initial:	none
	Applies To:	all elements
	Inherited:	No

 	
 none

	
 Does not set a subject.

	
 <string>

	
 Sets the specified string as subject.

	
 content()

	
 Sets the subject from the content of the element.

 See also:

 -ro-author, -ro-keywords, -ro-title

 More information:

 suffix

 	Value:	[<string> | <identifier>]
	Initial:	"."
	Applies To:	@counter-style
	Inherited:	No

 MDN documentation:

 suffix

 symbols

 The symbols CSS descriptor is used to specify the symbols that the specified counter system will use to construct counter representations.

 	Value:	[<string> | <identifier>]+
	Initial:	""
	Applies To:	@counter-style
	Inherited:	No

 MDN documentation:

 symbols

 system

 The system descriptor specifies the algorithm to be used for converting the integer value of a counter to a string representation. Used in the counter-style at-rule.

 	Value:	cyclic | numeric | alphabetic | symbolic | additive | [fixed <integer>?] | [extends <identifier>]
	Initial:	symbolic
	Applies To:	@counter-style
	Inherited:	No

 MDN documentation:

 system

 -ro-tab-size

 This property determines the tab size used to render preserved tab characters (U+0009). Integers represent the measure as multiples of the space character's advance width (U+0020). Negative values are not allowed.

 	Value:	<integer>
	Initial:	8
	Applies To:	block containers
	Inherited:	Yes

 table-layout

 The 'table-layout' property controls which algorithm is used to lay out tables, including their rows and cells. For performance reasons, excessively nested HTML table elements are set to 'fixed' instead of the initial value 'auto' unless 'auto' is explicitly set.

 	Value:	auto | fixed
	Initial:	auto
	Applies To:	'table' and 'inline-table' elements
	Inherited:	No

 MDN documentation:

 table-layout

 -ro-target-candidate

 Only has any affect when segmentation is enabled and there are "target-counter(s)" or "target-text" functions using "attr" or "-ro-attr" functions to determine their targets.
 For cross-references to be able to access targets in previous segments, the data of these targets must be kept in memory, which is enabled using this property on the target elements.
 Please note that using the values "text" or "all" on an excessive amount of elements or on elements with a lot of text content can drastically increase memory consumption.

 	Value:	none || all || counter || text
	Initial:	none
	Inherited:	No

 	
 none

	
 The text and counter data of the element can not be accessed from later segments.

	
 all

	
 The text and counter data of the element can be accessed from later segments.

	
 counter

	
 The counter data of the element can be accessed from later segments.

	
 text

	
 The text of the element can be accessed from later segments.

 More information:

 text-align

 This property describes how the inline-level content of a block is aligned along the inline axis if the content does not completely fill the line box.

 	Value:	start | end | left | right | center | justify | match-parent | justify-all
	Initial:	start
	Applies To:	block containers
	Inherited:	Yes

 MDN documentation:

 text-align

 See also:

 text-align-all, text-align-last

 text-align-all

 This longhand property of 'text-align' specifies the text alignment of all lines inside the block container, except for the last line, if 'text-align-last' is set to a non-auto value. Generally, it is recommended to use the shorthand 'text-align' instead of this property.

 	Value:	start | end | left | right | center | justify | match-parent
	Initial:	start
	Applies To:	block containers
	Inherited:	Yes

 See also:

 text-align, text-align-last

 text-align-last

 This property describes how the last line of a block or a line right before a forced line break is aligned. If a line is also the first line of the block or the first line after a forced line break, then 'text-align-last' takes precedence over 'text-align-all'.
 For the individual values, see their corresponding description for 'text-align'.

 	Value:	auto | start | end | left | right | center | justify
	Initial:	auto
	Applies To:	block containers
	Inherited:	Yes

 MDN documentation:

 text-align-last

 See also:

 text-align, text-align-all

 text-decoration

 This property describes decorations that are added to the text of an element using the element's color.

 	Value:	none | [underline || line-through]
	Initial:	none
	Inherited:	No

 MDN documentation:

 text-decoration

 text-indent

 This property specifies the indentation of the first line of text in a block container.

 	Value:	<length> | <percentage>
	Initial:	0
	Applies To:	block containers
	Inherited:	Yes

 MDN documentation:

 text-indent

 text-overflow

 Determines how content that overflows its line is rendered, when overflow of its paragraph has a other value than visible.

 	Value:	clip | ellipsis | -ro-scale-down
	Initial:	clip
	Applies To:	block containers
	Inherited:	No

 	
 -ro-scale-down

	
 Visually reduces the size of the text until there is no more overflow. The origin of that scale transform depends on two other properties, 'direction' for its horizontal position, which is always on the start side, and 'align-content' for the vertical position, which can be 'start', 'end', 'center', 'baseline' (default) and 'stretch'. While the scale factor is based only on horizontal overflow, both directions are scaled by the same amount, except for a 'align-content' value of 'stretch', in which case there is only horizontal scaling.

 MDN documentation:

 text-overflow

 See also:

 overflow

 -ro-text-replace

 Replaces instances of text in layout. The first string is the pattern to be replaced and must be non-empty. The second string is the replacement text. Optionally the replacement point and method can be changed from their defaults of "white-space" and "strict" respectively. The latter two are changed individually for every replacement in a list.

 	Value:	none | [<string> <string> [[source | white-space | text-transform | shaped | hybrid-layout] || [strict | ignore-case | ignore-variants | regex | transliterate]]?]#
	Initial:	none
	Inherited:	Yes

 	
 source

	
 replacement point: before any other processing.

	
 white-space

	
 replacement point: after the "white-space" property was applied (default).

	
 text-transform

	
 replacement point: after the "white-space" and "text-transform" properties were applied.

	
 shaped

	
 replacement point: after the "white-space" and "text-transform" properties as well as shaping (e.g. for Arabic) was applied.

	
 hybrid-layout

	
 replacement point: during inline layout, using the original character for logical and the replacement for visual parts of the layout. The replacement must have the same length as the original.

	
 strict

	
 replacement method: simple case-sensitive (default).

	
 ignore-case

	
 replacement method: ignoring case as well as form (e.g. of Arabic characters due to shaping).

	
 ignore-variants

	
 replacement method: ignoring variants of any kind, including case, form, accents and diaereses.

	
 regex

	
 replacement method: using regular expression pattern.

	
 transliterate

	
 replacement method: transliteration. Use scripts as input and output, e.g.: "any" "latin" transliterate

 More information:

 List of transliterate input/output values

 text-shadow

 Adds shadows to text.

 	Value:	none | [<length>{2,3} && <color>?]#
	Initial:	none
	Inherited:	Yes

 MDN documentation:

 text-shadow

 text-transform

 This property controls capitalization effects of an element's text.

 	Value:	capitalize | uppercase | lowercase | none
	Initial:	none
	Inherited:	Yes

 MDN documentation:

 text-transform

 -ro-title

 Sets the title in the metadata of the PDF document. Multiple values are concatenated to one string. (When applied to multiple elements the values are concatenated, separated by a comma.)

 	Value:	none | [<string> | content()]+
	Initial:	none
	Applies To:	all elements
	Inherited:	No

 	
 none

	
 Does not set a title.

	
 <string>

	
 Sets the specified string as title.

	
 content()

	
 Sets the title from the content of the element.

 See also:

 -ro-author, -ro-keywords, -ro-subject

 More information:

 top

 This property specifies how far an absolutely positioned box's top margin edge is offset below the top edge of the box's containing block. For relatively positioned boxes, the offset is with respect to the top edges of the box itself (i.e., the box is given a position in the normal flow, then offset from that position according to these properties).

 	Value:	<length> | <percentage> | auto
	Initial:	auto
	Applies To:	positioned elements
	Inherited:	No

 MDN documentation:

 top

 See also:

 inset-*

 transform

 This property contains a list of transform functions. The final transformation value for a coordinate system is obtained by converting each function in the list to its corresponding matrix, then multiplying the matrices.
 Note that only 2D transforms are supported.

 	Value:	none | <transform-function>+
	Initial:	none
	Applies To:	transformable elements
	Inherited:	No

 MDN documentation:

 transform

 -ro-transform

 This property contains a list of transform functions. The final transformation value for a coordinate system is obtained by converting each function in the list to its corresponding matrix, then multiplying the matrices.

 	Value:	none | <transform-function>+
	Initial:	none
	Inherited:	No

 Deprecated!

 Use transform instead.

 transform-origin

 This property defines the point of origin of transformations.
 If only one value is specified, the second value is assumed to be center. A third value for setting the Z offset is not supported.

 	Value:	[left | center | right | top | bottom | <percentage> | <length>] | [left | center | right | <percentage> | <length>] [top | center | bottom | <percentage> | <length>] | [[center | left | right] && [center | top | bottom]]
	Initial:	50% 50%
	Applies To:	transformable elements
	Inherited:	No

 MDN documentation:

 transform-origin

 -ro-transform-origin

 This property defines the point of origin of transformations. If only one value is specified, the second value is assumed to be center.

 	Value:	[[<percentage> | <length> | left | center | right] [<percentage> | <length> | top | center | bottom]] | [<percentage> | <length> | left | center | right | top | bottom]
	Initial:	50% 50%
	Inherited:	No

 Deprecated!

 Use transform-origin instead.

 -ro-truncate-margin-after-break

 Defines the rules by which the margins of blocks at the beginning of a page, column or similar should be truncated to zero.

 	Value:	none | auto | always
	Initial:	auto
	Applies To:	pages, multi-column containers, regions, root elements of iframes
	Inherited:	Yes

 	
 none

	
 The margins are never truncated to zero.

	
 auto

	
 The behavior defined by the CSS specifications. The margins are truncated to zero if the page break has not been forced. The margin on the first page and after a forced break is preserved.

	
 always

	
 The margins of blocks at the top of a page are always truncated to zero. This is the behavior of PDFreactor prior to version 9.

 unicode-bidi

 This property relates to the handling of bidirectional text in a document.

 	Value:	normal | embed | isolate | bidi-override | isolate-override | plaintext
	Initial:	normal
	Inherited:	No

 	
 normal

	
 The element does not open an additional level of embedding with respect to the bidirectional algorithm. For inline elements, implicit reordering works across element boundaries.

	
 embed

	
 If the element is inline, this value opens an additional level of embedding with respect to the bidirectional algorithm. The direction of this embedding level is given by the 'direction' property. Inside the element, reordering is done implicitly. This corresponds to adding a LRE (U+202A; for 'direction: ltr') or RLE (U+202B; for 'direction: rtl') at the start of the element and a PDF (U+202C) at the end of the element.

	
 bidi-override

	
 For inline elements this creates an override. For block container elements this creates an override for inline-level descendants not within another block container element. This means that inside the element, reordering is strictly in sequence according to the 'direction' property; the implicit part of the bidirectional algorithm is ignored. This corresponds to adding a LRO (U+202D; for 'direction: ltr') or RLO (U+202E; for 'direction: rtl') at the start of the element or at the start of each anonymous child block box, if any, and a PDF (U+202C) at the end of the element.

	
 isolate-override

	
 This combines the isolation behavior of isolate with the directional override behavior of bidi-override: to surrounding content, it is equivalent to isolate, but within the box content is ordered as if bidi-override were specified. It effectively nests a directional override inside an isolated sequence.

	
 plaintext

	
 This value behaves as isolate except that for the purposes of the Unicode bidirectional algorithm, the base directionality of each of the box’s bidi paragraphs (if a block container) or isolated sequences (if an inline) is determined by following the heuristic in rules P2 and P3 of the Unicode bidirectional algorithm (rather than by using the direction property of the box).

 MDN documentation:

 unicode-bidi

 See also:

 direction

 More information:

 vertical-align

 This property affects the vertical positioning inside a line box of the boxes generated by an inline-level element.

 	Value:	baseline | sub | super | top | text-top | middle | bottom | text-bottom | <percentage> | <length>
	Initial:	baseline
	Applies To:	inline-level and 'table-cell' elements
	Inherited:	No

 MDN documentation:

 vertical-align

 visibility

 The 'visibility' property specifies whether the boxes generated by an element are rendered. Invisible boxes still affect layout (set the 'display' property to 'none' to suppress box generation altogether). The value 'collapse' is not supported for flex items.

 	Value:	visible | hidden | collapse
	Initial:	visible
	Inherited:	Yes

 MDN documentation:

 visibility

 white-space

 This property declares how white space inside the element is handled.

 	Value:	normal | pre | nowrap | pre-wrap | pre-line
	Initial:	normal
	Inherited:	Yes

 MDN documentation:

 white-space

 widows

 The 'widows' property specifies the minimum number of lines in a block container that must be left at the top of a page.

 	Value:	<integer>
	Initial:	2
	Applies To:	block container elements
	Inherited:	Yes

 MDN documentation:

 widows

 More information:

 width

 This property specifies the content width of boxes.

 	Value:	auto | <length> | <percentage> | min-content | max-content
	Initial:	auto
	Applies To:	all elements but non-replaced inline elements, table rows, and row groups
	Inherited:	No

 MDN documentation:

 width

 -ro-width

 This property allows the automatic resizing of form controls according to
 their content. If this property is set to auto, the form controls' width automatically adjusts according to its content.

 	Value:	auto | none
	Initial:	none
	Applies To:	Form elements
	Inherited:	No

 	
 auto

	
 Automatically adjusts the width of a form control if the contents' width exceeds the width defined for the form control.

 word-spacing

 Allows to modify the spacing between words.

 	Value:	normal | <length> | <percentage>
	Initial:	normal
	Inherited:	Yes

 MDN documentation:

 word-spacing

 word-wrap

 This property specifies whether the UA may arbitrarily break within a word to prevent overflow when an otherwise unbreakable string is too long to fit within the line box. It only has an effect when 'white-space' allows wrapping. The difference between 'break-word' and 'anywhere' is that only the latter influences layouts that depend on the minimum sizes of elements.
 Note that this property is identical to 'overflow-wrap' and for legacy reasons it is handled as a shorthand for that property.

 	Value:	<'overflow-wrap'>
	Initial:	normal
	Inherited:	Yes

 See also:

 overflow-wrap

 z-index

 For a positioned box, the 'z-index' property specifies:
 1. The stack level of the box in the current stacking context.
 2. Whether the box establishes a stacking context.

 	Value:	<integer> | auto
	Initial:	auto
	Applies To:	positioned elements and grid items
	Inherited:	No

 MDN documentation:

 z-index

 Functions

 attr() -ro-attr()

 Creates a reference to the attribute of an element with the specified name.

 Parameters

 attr(<attr-name> <type-or-unit>? [, <attr-fallback>]?)

 	

 <attr-name>

	
 The attribute name

	

 <type-or-unit>

	
 Specifies how the attribute should be interpreted. Default is 'string'.

	

 <attr-fallback>

	
 If the attribute could not found, this value is used instead.

 MDN documentation:

 attr

 -ro-attr-ancestor()

 Allows to retrieve an attribute value as a string from the first ancestor in the parent chain matching the specified node name. If no name was specified or no matching ancestor was found, the attribute value of the original element is retrieved (if it exists).

 Parameters

 -ro-attr-ancestor(<attr-name> [, <element-name>]?)

 	

 attr-name

	
 The name of the attribute. Its value will be returned as a string. If it is not found, an empty string is returned.

	

 element-name

	
 If specified, the attribute value is retrieved from the first ancestor element with that name. If no element is found, the original element itself is used.

 blur()

 Applies a Gaussian blur.

 Parameters

 blur(radius)

 	

 radius length

	
 The radius of the blur. The blur can differ in x and y axis, by specifying a second length for the y axis.

 MDN documentation:

 blur

 brightness()

 Applies a multiplier to the brightness of an element.

 Parameters

 brightness(factor)

 	

 factor Number | Percentage

	

 MDN documentation:

 brightness

 calc()

 Computes mathematical expressions with addition (+), subtraction (-), multiplication (*), and division (/). The result can then be used for a wide range of properties.
 It can be used by any property that expects a length, frequency, angle, time, number or integer value.
 NOTE: The + and - operators must be surrounded with spaces.

 Parameters

 calc(expression)

 	

 expression

	
 The mathematical expression. A whitespace is required on both sides of + and - operators. Several terms can be chained (e.g. calc(50% - 2cm + 8px);).

 MDN documentation:

 calc

 circle()

 Defines a circle

 Parameters

 circle([<shape-radius>]? [at <position>]?)

 	

 shape-radius Length | Percentage | Identifier

	
 Defines the radius of the circle, closest-side if omitted. Valid identifiers are closest-side (uses the closest distance from the center of the circle to a border of the reference box) and farthest-side (uses the farthest distance to a border of the reference box).

	

 position

	
 Determines the center of the circle. Uses the same syntax as the 'background-position' property. Default value is 'center'.

 MDN documentation:

 basic-shape: circle()

 cmyk()

 CMYK colors for printing.

 Parameters

 cmyk(cyan, magenta, yellow, key[, alpha]?)

 	

 cyan Number | Percentage

	
 Cyan color component. Number between 0 and 1 or percentage.

	

 magenta Number | Percentage

	
 Magenta color component. Number between 0 and 1 or percentage.

	

 yellow Number | Percentage

	
 Yellow color component. Number between 0 and 1 or percentage.

	

 key Number | Percentage

	
 Key (usually black) color component. Number between 0 and 1 or percentage.

	

 alpha Number | Percentage

	
 Alpha value of the color. Number between 0 and 1 or percentage.

 More information:

 content()

 Allows to get the content of an element or pseudo-element.

 Parameters

 content(text, before, after, first-letter)

 	

 text

	
 The text content of the element. This is the default value.

	

 before

	
 The content of the ::before pseudo-element.

	

 after

	
 The content of the ::after pseudo-element.

	

 first-letter

	
 The first-letter of the element's content text.

 More information:

 contrast()

 Adjusts the contrast of the element.

 Parameters

 contrast(factor)

 	

 factor Number | Percentage

	

 MDN documentation:

 contrast

 counter()

 Refers to the value of a counter.

 Parameters

 counter(identifier[, identifier]?)

 	

 identifier

	
 The name of the counter

	

 identifier

	
 Specifies the style of the number. Default is 'decimal'.

 More information:

 -ro-counter-offset()

 Works like the counter function, but additionally modifies the result by the specified offset.

 Parameters

 -ro-counter-offset(<identifier>, <integer> [, [<identifier> | none]]?)

 	

 counter Identifier

	
 The name of the counter

	

 offset Integer

	
 The integer by which the counter value is modified.

	

 list-type Identifier

	
 Used to format the result, see the property 'list-style-type' for more information on the keywords. Default is 'decimal'.

 counters()

 Retrieves the values of all counters of the specified name in scope of this element, from outermost to innermost with the specified string inserted between them.

 Parameters

 counters(<identifier>, <string> [, [<identifier> | none]]?)

 drop-shadow()

 Applies a drop-shadow to the element.

 Parameters

 drop-shadow(<color>? && <length>{2,3})

 MDN documentation:

 drop-shadow

 element()

 This function places an element with a name specified via the running() function, in a page margin box.

 Parameters

 element(<identifier> [, [first | start | last | first-except]]?)

 	

 custom-ident

	
 The name of the running element as identifier, which is specified using the position property with the running() function.

	

 first | start | last | first-except

	
 Keywords that, in a case where there are multiple assignments on a page, specify which one should be used.

 More information:

 ellipse()

 Defines an ellipse

 Parameters

 ellipse([<shape-radius>{2}]? [at <position>]?)

 	

 shape-radius Length | Percentage | Identifier

	
 Define the horizontal and vertical radius of the ellipse, in this order. They default to closest-side if omitted, negative values are invalid. Valid identifiers are closest-side (uses the distance from the ellipses center to the closest border of the reference box which is orthogonal to the respective radius) and farthest-side (uses the farthest distance to the respective border of the reference box).

	

 position

	
 Determines the center of the ellipse. Uses the same syntax as the 'background-position' property. Default value is 'center'.

 MDN documentation:

 basic-shape: ellipse()

 gray() grey()

 Allows to specify a gray color

 Parameters

 gray(gray[, alpha]?)

 	

 gray Number | Percentage

	
 The shade of gray. A number between 0 and 1 or percentage.

	

 alpha Number | Percentage

	
 The alpha channel. A number between 0 and 1 or percentage.

 More information:

 grayscale()

 Reduces the contrast of the element, until it is completely gray.

 Parameters

 grayscale(factor)

 	

 factor Number | Percentage

	
 With a value of 1 or 100%, the element is in grayscale.

 MDN documentation:

 grayscale

 hsl()

 Specifies a color using hue, saturation and lightness. The alpha channel can be specified optionally.

 Parameters

 hsl(hue, saturation, lightness[, alpha]?)

 	

 hue Number | Angle

	
 The hue of the color. Set using an angle of the color circle. Number are interpreted as a number of degrees.

	

 saturation Percentage

	
 The saturation of the color.

	

 lightness Percentage

	
 The lightness of the color.

	

 alpha Number | Percentage

	
 Alpha color component. Number between 0 and 1 or percentage.

 MDN documentation:

 color value: HSL colors

 More information:

 hsla()

 Specifies a transparent color using hue, saturation, lightness and optionally alpha.

 Parameters

 hsla(hue, saturation, lightness[, alpha]?)

 	

 hue Number | Angle

	
 The hue of the color. Set using an angle of the color circle. Number are interpreted as a number of degrees.

	

 saturation Percentage

	
 The saturation of the color.

	

 lightness Percentage

	
 The lightness of the color.

	

 alpha Percentage

	
 The alpha channel.

 MDN documentation:

 color value: HSL colors

 More information:

 hue-rotate()

 Rotates the hue of the elements colors.

 Parameters

 hue-rotate(angle)

 	

 angle Angle

	
 The color shift as an angle.

 inset()

 Defines an inset rectangle.

 Parameters

 inset(<shape-arg>{1,4} [round <border-radius>]?)

 	

 shape-arg Length | Percentage

	
 Defines the top, right, bottom and left offsets from the reference box. These arguments follow the syntax of the margin shorthand.

	

 border-radius

	
 Defines rounded corners for the inset rectangle, using the border-radius shorthand syntax.

 MDN documentation:

 basic-shape: inset()

 invert()

 Inverts the colors of the element.

 Parameters

 invert(factor)

 	

 factor Number | Percentage

	
 How strong the inversion should be. 50% makes the image gray, 100% completely inverts all colors.

 MDN documentation:

 invert

 jpeg()

 Indicates that an image should be embedded into the PDF, using a JPEG compression.

 Parameters

 jpeg([quality]?)

 	

 quality Number | Percentage

	
 Defines the quality of the compressed image. Either a number between 0 and 1 or a percentage value between 0% and 100%.
If omitted, the quality defaults to 80%.

 leader()

 Creates a repeating pattern to connect content across horizontal spaces (for example the dots in a table of contents, which connect the chapter names with the page numbers).
 The function takes the pattern that should be repeated. Either one of the keywords dotted, solid, space or a custom string.

 Parameters

 leader([dotted | solid | space] | <string>)

 More information:

 linear-gradient()

 Creates a color gradient which for instance can be used as a background.

 Parameters

 linear-gradient([[<angle> | to <side-or-corner>] ,]? <color-stop>[, <color-stop>]+)

 	

 angle

	
 The angle of direction for the gradient.

	

 side-or-corner

	
 The direction of the gradient, using keywords. Syntax is [left | right] || [top | bottom].

	

 color-stop

	
 Defines the colors of the gradient. Syntax is "<color> [<percentage> | <length>]?".

 MDN documentation:

 linear-gradient

 lossless()

 Indicates that an image should be embedded into the PDF using lossless compression.

 Parameters

 lossless()

 matrix()

 Parameters

 matrix()

 MDN documentation:

 matrix

 opacity()

 Applies transparency to the element.

 Parameters

 opacity(factor)

 	

 factor Number | Percentage

	
 A value of 0% makes the element invisible.

 MDN documentation:

 opacity

 polygon()

 Defines a polygon.

 Parameters

 polygon([<fill-rule>,]? [<shape-arg> <shape-arg>]#)

 	

 fill-rule Identifier

	
 The filling rule used to determine the interior of the polygon. Possible values are nonzero and evenodd. Defaults to nonzero if omitted.

	

 shape-arg Length | Percentage

	
 Each pair defines a horizontal and vertical coordinate of a vertex of the polygon.

 MDN documentation:

 basic-shape: polygon()

 radial-gradient()

 Creates round color gradients which can be used as a background, for instance.

 Parameters

 radial-gradient([[<shape> || <size>] [at <position>]?,
 | at <position>,]? <color-stop> [, <color-stop>]+)

 	

 position

	
 Determines the center of the gradient. Uses the same syntax as the 'background-position' property. Default value is 'center'

	

 shape

	
 Can be either 'circle' or 'ellipse'. Default is 'ellipse'.

	

 size

	
 Determines the size of the gradient. Values can be lengths and percentages (if the gradient is an ellipse, two values define width and height) or keywords, which are 'closest-side', 'closest-corner', 'farthest-side' and 'farthest-corner'.

	

 color-stop

	
 Defines the colors of the gradient. Syntax is "<color> [<percentage> | <length>]?".

 MDN documentation:

 radial-gradient

 rect()

 Parameters

 rect()

 MDN documentation:

 shape: rect()

 repeating-linear-gradient()

 Creates a color gradient which is repeated infinitely. It has the same syntax as linear-gradient.

 Parameters

 repeating-linear-gradient([[<angle> | to <side-or-corner>] ,]?
 <color-stop> [, <color-stop>]+)

 	

 angle

	
 The angle of direction for the gradient.

	

 side-or-corner

	
 The direction of the gradient, using keywords. Syntax is [left | right] || [top | bottom].

	

 color-stop

	
 Defines the colors of the gradient. Syntax is "<color> [<percentage> | <length>]?".

 MDN documentation:

 repeating-linear-gradient

 repeating-radial-gradient()

 Creates round color gradients which is repeated infinitely. Uses the same syntax as radial-gradient.

 Parameters

 repeating-radial-gradient([[<shape> || <size>] [at <position>]#]? <color-stop> [, <color-stop>]+)

 	

 position

	
 Determines the center of the gradient. Uses the same syntax as the 'background-position' property. Default value is 'center'

	

 shape

	
 Can be either 'circle' or 'ellipse'. Default is 'ellipse'.

	

 size

	
 Determines the size of the gradient. Values can be lengths and percentages (if the gradient is an ellipse, two values define width and height) or keywords, which are 'closest-side', 'closest-corner', 'farthest-side' and 'farthest-corner'.

	

 color-stop

	
 Defines the colors of the gradient. Syntax is "<color> [<percentage> | <length>]?".

 rgb()

 Defines an RGB color by specifying the red, green, and blue channels. The alpha channel can be specified optionally.

 Parameters

 rgb(red, green, blue[, alpha]?)

 	

 red Number | Percentage

	
 Red color component. Number between 0 and 255 or percentage.

	

 green Number | Percentage

	
 Green color component. Number between 0 and 255 or percentage.

	

 blue Number | Percentage

	
 Blue color component. Number between 0 and 255 or percentage.

	

 alpha Number | Percentage

	
 Alpha color component. Number between 0 and 1 or percentage.

 MDN documentation:

 color value: RGB colors

 More information:

 rgba()

 Defines an RGB color by specifying the red, green, and blue components and optionally the alpha channel.

 Parameters

 rgba(red, green, blue[, alpha]?)

 	

 red Number | Percentage

	
 Red color component. Number between 0 and 255 or percentage.

	

 green Number | Percentage

	
 Green color component. Number between 0 and 255 or percentage.

	

 blue Number | Percentage

	
 Blue color component. Number between 0 and 255 or percentage.

	

 alpha Number | Percentage

	
 Alpha color component. Number between 0 and 1 or percentage.

 MDN documentation:

 color value: RGB colors

 More information:

 rotate()

 Parameters

 rotate()

 MDN documentation:

 rotate

 running()

 Moves the element out of the normal flow and into a page margin box as a running header or footer. The page margin box needs to specify the element function with the same <identifier> used for the running element to display it.

 Parameters

 running(custom-ident)

 	

 custom-ident

	
 Defines the name of the running element, which then is referenced by the element() function.

 More information:

 saturate()

 Changes the saturation of the element.

 Parameters

 saturate(factor)

 	

 factor Number | Percentage

	
 A value of 0 completely desaturates the colors, 1 or 100% leaves them unchanged and greater values increase the saturation.

 MDN documentation:

 saturate

 scale()

 Parameters

 scale()

 MDN documentation:

 scale

 scaleX()

 Parameters

 scaleX()

 MDN documentation:

 scaleX

 scaleY()

 Parameters

 scaleY()

 MDN documentation:

 scaleY

 -ro-separation() -ro-spot()

 This function is used to make a printer use one specific print color (i.e. not a mixture of colors from multiple runs).
 The functionality of the function -ro-spot is identical to this one.

 Parameters

 -ro-separation([[<string> | <identifier>] <number>?, <color>])

 	

 name String

	
 The name of the pantone.

	

 tint Number

	
 The tint of the color. The number must be between 0 and 1.Defaults to 1.

	

 alternative Color

	
 A CMYK or RGB version of the color for the case that the pantone is unknown (e.g. the color on a screen).

 More information:

 sepia()

 Convert the elements colors to sepia.

 Parameters

 sepia(factor)

 	

 factor Number | Percentage

	
 0 or 0% leaves the element's colors unchanged.

 MDN documentation:

 sepia

 skew()

 Parameters

 skew()

 MDN documentation:

 skew

 skewX()

 Parameters

 skewX()

 MDN documentation:

 skewX

 skewY()

 Parameters

 skewY()

 MDN documentation:

 skewY

 string()

 Copies the value of a named string to the document, using the content property.

 Parameters

 string(<custom-ident> [, [first | start | last | first-except]]?)

 	

 custom-ident

	
 The name of the named string which is set via the property string-set.

	

 first | start | last | first-except

	
 If there are multiple assignments on a page, this keyword specifies which one should be used.

 More information:

 target-counter()

 Retrieves the value of the counter with the given name.

 Parameters

 target-counter([<string> | <url>] , <custom-ident> [, <identifier>]?)

 	

 url

	
 The url of the target.

	

 custom-ident

	
 Name of the counter.

	

 identifier

	
 Used to format the result, see the property 'list-style-type' for more information on the keywords.

 More information:

 ,

 -ro-target-counter-offset()

 Retrieves the value of the counter with the given name at the specified point and modifies the result by an offset.

 Parameters

 -ro-target-counter-offset([<string> | <url>] , <custom-ident>, <integer> [, <identifier>]?)

 	

 url String | URL

	
 The url of the target.

	

 counter-name Identifier

	
 Name of the counter.

	

 offset Integer

	
 The offset by which the counter value is modified.

	

 list-type Identifier

	
 Used to format the result, see the property 'list-style-type' for more information on the keywords. Default is 'decimal'.

 target-counters()

 Retrieves and formats the values of the counters of the given name by inserting the specified string between the value of each nested counter.

 Parameters

 target-counters([<string> | <url>] , <custom-ident> , <string> [, <identifier>]?)

 target-text()

 Retrieves the text value of the element referred to by the URL.

 Parameters

 target-text([<string> | <url>] [, [content | before | after | first-letter]]?)

 	

 url

	
 The element whose content should be retrieved.

	

 content | before | after | first-letter

	
 Specifies what content is retrieved, using the same values as the 'string-set' property.

 More information:

 translate()

 Parameters

 translate()

 MDN documentation:

 translate

 translateX()

 Parameters

 translateX()

 MDN documentation:

 translateX

 translateY()

 Parameters

 translateY()

 MDN documentation:

 translateY

 url()

 Parameters

 url()

 MDN documentation:

 url: The url() functional notation

 var()

 Used to insert the value of a CSS variable instead of any part of a value of another property.

 Parameters

 var(<custom-property-name> [, <declaration-value>]?)

 	

 custom-property-name

	
 The variable name

	

 declaration-value

	
 The fallback value, which is used in case the variable is invalid in the used context

 xhtml()

 A proprietary function that allows to reference a document which then is embedded.

 Parameters

 xhtml(document)

 	

 document String | URL

	
 An HTML document string or a URL pointing to an HTML document

 More information:

 Pseudo Classes

 For @page rules

 :blank

 Matches pages without content that appear as a result of forced page breaks.

 :first

 The first page of the document.

 More information:

 :-ro-last

 The last page of the document.

 More information:

 :left

 A left page of the document.

 MDN documentation:

 :left

 More information:

 :-ro-nth(An+B | even | odd)

 This pseudo class matches a page with a page number that matches the given equation.

 Parameters

 :-ro-nth(An+B | even | odd)

 	

 An+B | even | odd

	
 Describes on which page numbers this selector should match. A and B are integers, while n is the non-negative variable (counting from 1 to the total number of pages). The selector matches if the number of previous pages is a solution of the expression.

 More information:

 ,

 :recto

 Same as 'right', unless the document direction is right-to-left, i.e. the root or body element has a 'direction' value of 'rtl', in which case it is the same as 'left'.

 More information:

 :right

 A right page of the document.

 MDN documentation:

 :right

 More information:

 :verso

 Same as 'left', unless the document direction is right-to-left, i.e. the root or body element has a 'direction' value of 'rtl', in which case it is the same as 'right'.

 More information:

 For elements

 :checked

 A checked checkbox or radio button.

 MDN documentation:

 :checked

 :disabled

 A disabled form field.

 MDN documentation:

 :disabled

 :empty

 An element without children (including text nodes)

 MDN documentation:

 :empty

 :enabled

 An enabled form field.

 MDN documentation:

 :enabled

 :first-child

 An element, first child of its parent

 MDN documentation:

 :first-child

 :first-of-type

 An element, first sibling of its type.

 MDN documentation:

 :first-of-type

 :lang(languagecode)

 Selects every element with a lang attribute value starting with the languagecode specified as parameter

 Parameters

 :lang(languagecode)

 	

 languagecode String

	
 The language code to match, e.g. "de", "en", "it", etc.

 MDN documentation:

 :lang

 :last-child

 An element, last child of its parent

 MDN documentation:

 :last-child

 :last-of-type

 An element, last sibling of its type.

 MDN documentation:

 :last-of-type

 :link

 Selects all unvisited links.

 MDN documentation:

 :link

 :-ro-matches(s)

 An element that matches selector s.

 Parameters

 :-ro-matches(s)

 	

 s String

	
 The selector to match.

 :-ro-no-content

 Matches on an element without textual content, with certain character like whitespaces being ignored. Textual content is any character that does not match to the following Unicode Character Categories: Control (Cc), Format (Cf), Line Separator (Zl), Paragraph Separator (Zp), Space Separator (Zs).

 :not(s)

 An element that does not match selector s.

 Parameters

 :not(s)

 	

 s String

	
 The selector to match.

 MDN documentation:

 :not

 :nth-child(An+B | even | odd)

 An element, nth child of its parent.
 The selector matches, if the element's index (with 1 being the index of the first child) is a solution of the equation a*n + b, with a and b being integers and n being a non-negative variable integer.
 The keyword even is the same as "2n" and odd is the same as "2n+1".

 Parameters

 :nth-child(An+B | even | odd)

 	

 An+B | even | odd

	

 MDN documentation:

 :nth-child

 :nth-last-child(An+B | even | odd)

 An element, nth last child of its parent.
 The selector matches, if the element's index counting from its parent's last child (with 1 being the index of the last child) is a solution of the equation a*n + b, with a and b being integers and n being a non-negative variable integer.
 The keyword even is the same as "2n" and odd is the same as "2n+1".

 Parameters

 :nth-last-child(An+B | even | odd)

 	

 An+B | even | odd

	

 MDN documentation:

 :nth-last-child

 :nth-last-of-type(An+B | even | odd)

 An element, nth last sibling of its type.
 The element's siblings of the same type are counted, beginning with the last one. If the found number is a solution of the equation a*n + b, with a and b being integers and n being a non-negative variable integer, the selector matches.
 The keyword even is the same as "2n" and odd is the same as "2n+1".

 Parameters

 :nth-last-of-type(An+B | even | odd)

 	

 An+B | even | odd

	

 MDN documentation:

 :nth-last-of-type

 :nth-of-type(An+B | even | odd)

 An element, nth sibling of its type.
 The element's siblings of the same type are counted. If the found number is a solution of the equation a*n + b, with a and b being integers and n being a non-negative variable integer, the selector matches.
 The keyword even is the same as "2n" and odd is the same as "2n+1".

 Parameters

 :nth-of-type(An+B | even | odd)

 	

 An+B | even | odd

	

 MDN documentation:

 :nth-of-type

 :only-child

 Selects every element that is the only child of its parent.

 MDN documentation:

 :only-child

 :only-of-type

 An element, only sibling of its type.

 MDN documentation:

 :only-of-type

 :root

 Selects the document's root element.

 MDN documentation:

 :root

 Pseudo Elements

 ::after

 Generated content after an element.

 MDN documentation:

 ::after

 ::-ro-after-break

 Creates generated content at the top of a fragment after a break.

 More information:

 ::before

 Generated content before an element.

 MDN documentation:

 ::before

 ::-ro-before-break

 Creates generated content at the bottom of a fragment before a break.

 More information:

 ::first-letter

 Selects the first letter of each element.

 MDN documentation:

 ::first-letter

 ::-ro-footnote-area

 Specified on a multi-column container or a region flow box, this pseudo-element allows to set styles on the respective footnote area.

 ::footnote-call

 Generated content replacing elements that are moved to the footnote area.

 ::footnote-marker

 Generated content preceding footnotes.

 At-Rules

 @charset

 The character encoding that is used. The at-rule @charset does not work for a style sheet that is imported via @import.

 Syntax

 @charset "encoding"

 MDN documentation:

 @charset

 @counter-style

 A custom counter-style.

 Syntax

 @counter-style [name] {
 counter-style descriptors
}

 MDN documentation:

 @counter-style

 @font-face

 A custom font.

 Syntax

 @font-face {
 font descriptors
}

 MDN documentation:

 @font-face

 More information:

 CSS Defined Fonts

 @import

 Imports another style sheet into this one.

 Syntax

 @import {url} [media type,…];

 MDN documentation:

 @import

 @media

 The specific media types to which this style sheet will apply.

 Syntax

 @media media type,… {
 ruleset
}

 MDN documentation:

 @media

 @namespace

 Declares an XML namespace, usually with a prefix.

 Syntax

 @namespace [prefix] uri

 MDN documentation:

 @namespace

 @page

 Selector for specific pages.

 Syntax

 @page [name][:first | :blank | :left | :right | :recto | :verso | :-ro-last | :-ro-nth(An+B [of name])] {
 page ruleset
}

 MDN documentation:

 @page

 More information:

