
Tagged PDF, PDF/A and PDF/UA Compliance

Tagged PDF, PDF/A and PDF/UA
Compliance
1. Tagged PDF
Tagged PDF files contain information about the structure of the
document. The information about the structure is transported via
so-called "PDF tags". Tagging a PDF makes it more accessible
to screen readers and other accessibility tools. It contains
important information like the languages of texts, the structures
of tables and alternative texts for graphics.

Enabled tagging can also improve copy and paste behavior. For
example, copying paragraphs from a tagged PDF created with
PDFreactor can ignore the implicit line breaks inside the
paragraphs. This information also allows for reflow in viewers
that support it.

Using the addTags configuration property, you can add PDF
tags to PDF documents generated with PDFreactor. If you are
generating PDFs from HTML documents, the HTML elements
and their styles are automatically mapped to the corresponding
PDF tags, so all you have to do is set this property to enable
tagging.

The screenshot on the right (taken from Adobe Acrobat DC)
shows that PDFreactor is capable of tagging even complex
structures such as tables properly. The table below was placed
at the bottom of the page to demonstrate that PDFreactor won't
repeat the <table> or <thead> tag even though the table splits
onto another page, repeating its header. The continuation
markers are also ignored as pagination artifacts, as are page
headers and footers.

The fully automated tagging can be overridden using WAI-ARIA
(see related chapter) or various custom CSS Properties
-ro-pdf-tag-* (see PDFreactor manual), allowing for as
much, or as little, manual intervention as required.

A tagged PDF will often be bigger than an equivalent PDF file
that does not include PDF tags, especially when full
compression is disabled. Please note that PDF/A-1
conformance disables full compression.

Example table

Employee Mail Phone

John Doe johne.doe@example.com 202-555-0152

Austin King austin.king@example.com 202-555-0191

Continued on next page

www.pdfreactor.com/manual1

Tagged PDF, PDF/A and PDF/UA Compliance

Continued from previous page

Employee Mail Phone

Edward Alsop edward.alsop@example.com 202-555-0113

Brian Mitchell brian.mitchell@example.com 202-555-0131

1. PDF/A Conformance
PDF/A differs from PDF by prohibiting features ill-suited to long-term archiving, such as font linking (as
opposed to font embedding).

The PDF/A standard does not define an archiving strategy or the goals of an archiving system. It identifies a
"profile" for electronic documents that ensures the documents can be reproduced exactly the same way
using various software in years to come. A key element to this reproducibility is the requirement for PDF/A
documents to be 100% self-contained. All of the information necessary for displaying the document in the
same manner is embedded in the file. This includes, but is not limited to, all content (text, raster images and
vector graphics), fonts and color information. A PDF/A document is not permitted to be reliant on information
from external sources (e.g. font programs and data streams), but may include annotations (e.g. hypertext
links) that link to external documents.

PDFreactor supports the creation of all PDF/A conformant files.

Many companies and government organizations worldwide require PDF/A conformant documents. Tagged
PDFs are a requirement of Section 508 of the American Rehabilitation Act.

PDF/A-1a is the most strict PDF/A standard while the newer PDF/A standards are more lenient, e.g. allowing
transparency and attachments.

1.1. Common PDF/A conformance requirements

PDF/A restriction PDFreactor actions

All used fonts are
embedded. PDFreactor ignores the option to disable font embedding.

All images are
embedded. Images are always automatically embedded by PDFreactor.

Multi-media content is
prohibited.

Embedding objects is automatically prevented by PDFreactor when PDF/A
conformance is set.

JavaScript is
prohibited.

No JavaScript is embedded when PDF/A conformance is set. (This does not
prohibit JavaScript in the source HTML document to be processed during
conversions)

Encryption is
disallowed. This is automatically prevented when the PDF/A conformance is set.

The PDF must be
tagged. This is automatically done by PDFreactor when PDF/A conformance is set.

Metadata included in
the PDF is required to
be standard-based
XMP.

This is automatically done by PDFreactor when PDF/A conformance is set.

www.pdfreactor.com/manual 2

Tagged PDF, PDF/A and PDF/UA Compliance

PDF/A restriction PDFreactor actions

Colors are specified in
a device-independent
manner.

In PDFreactor colors are defined either as RGB or CMYK. When PDF/A
conformance is set, one of these color spaces has to be set in conjunction with
a color space profile. CMYK requires an ICC profile to be set, RGB colors use
a default sRGB profile, if no other is set. Using RGB colors in CMYK PDF/A
documents or vice versa is prohibited. Color keywords and shades specified
via the "gray" function are converted to the appropriate color space losslessly.

Requires PDF version
1.4, specifically.

PDFreactor automatically disables features that require PDF 1.5 or newer, incl.
full compression, which will increase the size of the output files, especially as
they are tagged.

1.2. PDF/A-1a specific conformance requirements

PDF/A-1a restriction PDFreactor actions

Transparency is
disallowed.

PDFreactor will ignore certain kinds of transparency of images. Other
occurrences of transparency will cause an exception to be thrown.

Attachments are
disallowed. This is automatically prevented when PDF/A-1a conformance is set.

To create a PDF/A conformant document, the configuration property conformance can be used in the
PDFreactor integration:

config.setConformance(Conformance.PDFA3A);

If CMYK colors are used in a document to be converted into a PDF/A-conformant file, an Output Intent has to
be set. This is possible to use the following API calls:

Configuration config = new Configuration();

OutputIntent outputIntent = new OutputIntent();

outputIntent.setIdentifier("ICC profile identifier");

// Use this if you are loading the ICC profile via URL

outputIntent.setUrl("URL/to/ICC/profile");

// Use this if you want to specify the ICC profile's binary data

outputIntent.setData(iccProfileBinaryData);

config.setOutputIntent(outputIntent);

The identifier property is a string identifying the intended output device or production condition in
human- or machine-readable form. The url property points to an ICC profile file while the data property
contains data of such a profile.

Note

When PDF/A conformance is set, encryption, restrictions, comments, full compression and other non PDF/A-
conformant features are automatically overridden, regardless of their own settings.

Setting PDF/A-1a conformance generates PDFs with Adobe PDF version 1.4 in which some PDF tags are forbidden
e.g. <tbody>. PDFreactor will skip all forbidden tags automatically, but handle table headers correctly.

www.pdfreactor.com/manual3

3. Tagging PDFs using WAI-ARIA attributes

2. PDF/UA Conformance
PDF/UA (PDF/Universal Accessibility) is the informal name for ISO 14289, the International Standard for
accessible PDF technology. A technical specification intended for developers implementing PDF writing and
processing software, PDF/UA provides definitive terms and requirements for accessibility in PDF documents
and applications. For those equipped with appropriate software, conformance with PDF/UA ensures
accessibility for people with disabilities who use assistive technology such as screen readers, screen
magnifiers, joysticks and other technologies to navigate and read electronic content.

PDF/UA can be combined with PDF/A to create PDFs that are conformant with both standards
simultaneously. For this, PDFreactor offers combined conformance constants like this:

config.setConformance(Conformance.PDFA3A_PDFUA1);

3. Tagging PDFs using WAI-ARIA attributes
PDFreactor 12 adds the ability to translate ARIA attributes into appropriate PDF tags. As opposed to the
prior parts of this sample, the following pages take advantage of this.

There will be different cases that alternate between their content as it is rendered in the PDF, their respective
source code as well as resulting accessibility tree when viewed in the Google Chrome Devtools in
comparison to the resulting PDF viewed in PAC. Note however, that the embedded pictures do not contain
all embedded accessibility information.

To see all tagged aspects and attributes, you can inspect this PDF document with a tool that can analyze
accessible PDFs like the PDF accessibility checker (PAC) by the PDF/UA Foundation.

For more detailed information about the usage of ARIA in PDFreactor, like the exact mapping of roles to PDF
tags, as well as the creation of accessible documents in general, please refer to the respective chapter in the
manual.

Note

The HTML elements in these examples don't always match their ARIA roles. This is by design, as PDFreactor would
already tag most of them appropriately otherwise, without the addition of ARIA attributes.
The source and accessibility data of these examples is not tagged to make the tag tree more easy to navigate.

Important

Even though WAI-ARIA attributes can be mapped to PDF tag structures automatically, the resulting PDFs should be
validated independently from the source HTML document.

Example 1: Tagging a table

The following section is tagged as a table, including column headers. The table has a size of 2 by 5 cells.

View

Table header, Cell 1 Table header, Cell 2
Row 1, Cell 1 Row 1, Cell 2
Row 2, Cell 1 Row 2, Cell 2
Row 3, Cell 1 Row 3, Cell 2
Row 4, Cell 1 Row 4, Cell 2

www.pdfreactor.com/manual 4

https://pdfua.foundation/en/pdf-accessibility-checker-pac

Example 1: Tagging a table

Source

<div role="table">

 <div role="rowgroup">

 <div role="row">

 Table header, Cell 1

 Table header, Cell 2

 </div>

 </div>

 <div role="rowgroup">

 <div role="row">

 Row 1, Cell 1 Row 1, Cell 2

 </div>

 <div role="row">

 Row 2, Cell 1 Row 2, Cell 2

 </div>

 <div role="row">

 Row 3, Cell 1 Row 3, Cell 2

 </div>

 <div role="row">

 Row 4, Cell 1 Row 4, Cell 2

 </div>

 </div>

</div>

www.pdfreactor.com/manual5

Example 1: Tagging a table

Google Chrome PDFAccessibility Information

www.pdfreactor.com/manual 6

Example 2: Tagging a table of contents

Example 2: Tagging a table of contents

This section is tagged as a table of contents or list with 16 entries and up to 4 levels.

View

Chapter 1
Chapter 2
Chapter 2.1
Chapter 2.1.1
Chapter 2.1.2
Chapter 2.2
Chapter 3
Chapter 4
Chapter 4.1
Chapter 4.1.1
Chapter 4.1.1.1
Chapter 4.1.1.2
Chapter 4.1.2
Chapter 4.2
Chapter 5
Chapter 6

Source

<div role="list">

 <div role="listitem">Chapter 1</div>

 <div role="listitem">Chapter 2</div>

 <div role="list">

 <div role="listitem">Chapter 2.1</div>

 <div role="list">

 <div role="listitem">Chapter 2.1.1</div>

 <div role="listitem">Chapter 2.1.2</div>

 </div>

 <div role="listitem">Chapter 2.2</div>

 </div>

 <div role="listitem">Chapter 3</div>

 <div role="listitem">Chapter 4</div>

 <div role="group">

 <div role="listitem">Chapter 4.1</div>

 <div role="group">

 <div role="listitem">Chapter 4.1.1</div>

 <div role="group">

 <div role="listitem">Chapter 4.1.1.1</div>

 <div role="listitem">Chapter 4.1.1.2</div>

 </div>

 <div role="listitem">Chapter 4.1.2</div>

 </div>

 <div role="listitem">Chapter 4.2</div>

 </div>

 <div role="listitem">Chapter 5</div>

 <div role="listitem">Chapter 6</div>

</div>

www.pdfreactor.com/manual7

Example 2: Tagging a table of contents

Google Chrome PDFAccessibility Information

www.pdfreactor.com/manual 8

Example 3: Labeling an image

Example 3: Labeling an image

The following element is tagged as an image.

View

Source

<div aria-label="Checkerboard pattern" role="img"

 style="background-image: url('./img/checkerboard.jpg'); height: 5cm;"></div>

This element is represented as 'img' in Chrome and tagged as a 'Figure' in PDF.

Example 4: Tagging forms

This section is tagged as if it contained forms: A textbox, a "mixed" checkbox and a radio group with 3
buttons.

Note

Only the tags for non-interactive forms can be set like this. In case interactive PDF forms/AcroForms are used, their
role/type and checked values can't be overridden this way.

View

Textbox content

 /

O X O

Source

<p aria-label="sample text box" role="textbox">Textbox content</p>

<p>

 /

</p>

<p aria-label="Radiogroup" role="radiogroup">

 O

 X

 O

</p>

www.pdfreactor.com/manual9

Example 4: Tagging forms

Google Chrome PDFAccessibility Information

www.pdfreactor.com/manual 10

Example 5: Miscellaneous ARIA attributes

Example 5: Miscellaneous ARIA attributes

This section showcases some of the ARIA attributes that can be used to convey additional information to
assistive technology. You can access labels and other data that is not directly visible in the accessibility tree
by viewing this HTML document in a browser or by checking the PDF using a suitable tool.

View

Although this paragraph is clearly visible, it is marked as an artifact due to its aria-hidden attribute
being set to true.

The aria-label attribute allows you to attach a label to an user interface element using the attribute

value, just as it was done for this checkbox:

In the same way, aria-labelledby can be used to label them using the content of other elements:

A label created from the content of another element.

aria-describedby is similar to aria-labelledby, with the key difference that labels are meant to be

short and concise, while descriptions may provide additional information that might not be needed:

However, both labels and descriptions are mapped to the same "Desc" attribute when mapped to PDF.
When both aria-describedby and aria-labelledby are applied to the same element, the label
takes precedence.

A checkbox without any purpose aside from being described by the content of another element. Note the
additional length and verbosity because it is not just labelled but described.

Both aria-describedby and aria-labelledby need to refer to an element that is part of the DOM,
meaning that it needs to be at least theoretically visible. Note that display: none; will remove the
element.

This heading is tagged with level 4,

while this one with level 5. Both because of aria-level.

Note that these headings are automatically added to the bookmarks in the documents outline, just as any
h element would be.

www.pdfreactor.com/manual11

Example 5: Miscellaneous ARIA attributes

Source

<p aria-hidden="true">Although this paragraph is clearly visible, it is marked as an artifact

 due to its <code>aria-hidden</code> attribute being set to true.

</p>

<p>The <code>aria-label</code> attribute allows you to attach a label to an user interface element

 using the attribute value, just as it was done for this checkbox:

 <input aria-label="A label set as an attribute value!" type="checkbox">

</p>

<p>In the same way, <code>aria-labelledby</code> can be used to label them using the content

 of another element: <input aria-labelledby="label-identifier" type="checkbox">

</p>

<p aria-hidden="true" id="label-identifier">A label created from the content

 of another element.</p>

<p><code>aria-describedby</code> is similar to <code>aria-labelledby</code>, with the key

 difference being that labels are meant to be short and concise, while descriptions

 may provide additional information that might not be needed:

 <input aria-describedby="description-identifier" type="checkbox">

 However, both labels and descriptions are mapped to the same "Desc" attribute when mapped to

 PDF. When both <code>aria-describedby</code> and <code>aria-labelledby</code> are applied to

 the same element, the label takes precedence.

</p>

<p aria-hidden="true" id="description-identifier">A checkbox

 without any purpose aside from being described by the content of another element.

 Note the additional length and verbosity because it is not just labelled but described.</p>

<p>Both <code>aria-describedby</code> and <code>aria-labelledby</code> need to refer to an element

 that is part of the DOM, meaning that it needs to be at least theoretically visible.

 Note that <code>display: none;</code> will remove the element.</p>

<p aria-level="4" role="heading">This heading is tagged with level 4,</p>

<p aria-level="5" role="heading">while this one with level 5. Both because of

 <code>aria-level</code>.

</p>

<p>Note that these headings are automatically added to the bookmarks in the documents outline,

 just as any <code>h</code> element would be.</p>

www.pdfreactor.com/manual 12

Example 5: Miscellaneous ARIA attributes

Google Chrome PDFAccessibility Information

www.pdfreactor.com/manual13

	Tagged PDF, PDF/A and PDF/UA Compliance
	Tagged PDF
	PDF/A Conformance
	Common PDF/A conformance requirements
	PDF/A-1a specific conformance requirements

	PDF/UA Conformance
	Tagging PDFs using WAI-ARIA attributes
	Tagging a table
	Tagging a table of contents
	Labeling an image
	Tagging forms
	Miscellaneous ARIA attributes
	This heading is tagged with level 4,
	while this one with level 5. Both because of aria-level.

