<!DOCTYPE html> <html lang="en-US" xmlns:barcode="http://barcode4j.krysalis.org/ns"> <head> <title>Compound Formats Sample</title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/> <link href="../common.css" rel="stylesheet" type="text/css" /> <link href="compoundFormats.css" rel="stylesheet" type="text/css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ jax: ["input/MathML", "output/SVG"], extensions: ["mml2jax.js"], MathML: { extensions: ["content-mathml.js"] }, SVG: { blacker: 0 } }); </script> <script type="text/javascript" src="mathjax/MathJax.js"></script> </head> <body> <h1>Compound Formats Sample</h1> <table class="intro pageBreak"> <tr> <td><span class="qrcode introIcon">https://www.pdfreactor.com</span></td> <td> <math> <mi>f</mi> <mo>'</mo> <mn>(</mn> <mi>a</mi> <mn>)</mn> <mo>=</mo> <munder> <mo moveablelimits='false'>lim</mo> <mi>h→0</mi> </munder> <mfrac> <mrow> <mi>f</mi> <mo>(</mo> <mi>a</mi> <mi>+</mi> <mi>h</mi> <mo>)</mo> <mo>−</mo> <mi>f</mi> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <mi>h</mi> </mfrac> </math> </td> <td><img class="introIcon" src="chart.svg" /></td> </tr> <tr class="introNames"> <td><span>Barcodes</span></td> <td><span>MathML</span> <span>using the JavaScript library</span> <span>MathJax</span></td> <td><span>SVG</span></td> </tr> </table> <!-- Barcode --> <h2>Barcodes</h2> <p>This chapter shows the barcode capabilities of PDFreactor by displaying various types of barcodes.</p> <h3>2D-Barcodes</h3> <table class="barcodeTable"> <tr> <td> <p>QR Code</p> <div> <a href="https://www.pdfreactor.com" class="qrcode"></a> </div> </td> <td> <p>PDF417</p> <barcode:barcode message="RealObjects PDFreactor is a powerful formatting processor for converting HTML and XML documents into PDF."> <barcode:pdf417 /> </barcode:barcode> </td> <td> <p>DataMatrix</p> <barcode:barcode message="RealObjects PDFreactor is a powerful formatting processor for converting HTML and XML documents into PDF."> <barcode:datamatrix /> </barcode:barcode> </td> </tr> </table> <h3>Worldwide Retail Barcodes</h3> <table class="barcodeTable"> <tr> <td> <p>EAN-13</p> <barcode:barcode message="123456789012"> <barcode:ean-13 /> </barcode:barcode> </td> <td> <p>EAN-8</p> <barcode:barcode message="1234567"> <barcode:ean-8 /> </barcode:barcode> </td> <td> <p>GS1-128 (EAN-128)</p> <barcode:barcode message="123456789012"> <barcode:ean-128 /> </barcode:barcode> </td> </tr> <tr> <td colspan="3"> <p>ITF-14:</p> <barcode:barcode message="1234567890123"> <barcode:itf-14 /> </barcode:barcode> </td> </tr> </table> <h3>North America Retail Barcodes</h3> <table class="barcodeTable"> <tr> <td> <p>UPC-A</p> <barcode:barcode message="12345678901"> <barcode:upc-a /> </barcode:barcode> </td> <td> <p>UPC-E:</p> <barcode:barcode message="1234567"> <barcode:upc-e /> </barcode:barcode> </td> </tr> </table> <h3>Various Barcodes</h3> <table class="barcodeTable"> <tr> <td> <p>Code 128</p> <barcode:barcode message="Hello World"> <barcode:code128 /> </barcode:barcode> </td> <td> <p>Code 39</p> <barcode:barcode message="Hello World"> <barcode:code39 /> </barcode:barcode> </td> </tr> <tr> <td> <p>Codabar</p> <barcode:barcode message="1234567890"> <barcode:codabar /> </barcode:barcode> </td> <td> <p>Interleaved 2 of 5</p> <barcode:barcode message="1234567890"> <barcode:interleaved2of5 /> </barcode:barcode> </td> </tr> </table> <h3>Postal Barcodes</h3> <table class="barcodeTable"> <tr> <td> <p>POSTNET</p> <barcode:barcode message="1234567890"> <barcode:postnet /> </barcode:barcode> </td> <td> <p>Royal Mail CBC</p> <barcode:barcode message="1234567890"> <barcode:royal-mail-cbc /> </barcode:barcode> </td> </tr> <tr> <td colspan="2"> <p>USPS Intelligent Mail (4-State Customer Barcode)</p> <barcode:barcode message="12345678901234567890"> <barcode:usps4cb /> </barcode:barcode> </td> </tr> </table> <!-- MathML --> <h2>MathML</h2> <p>This chapter displays various types of mathematical formulas, using the JavaScript library MathJax to convert MathML to SVG. (A reduced version of MathJax 2.7.5 is included with this sample, under the Apache License 2.0) MathJax can be used without changing source documents via a user-script included in the PDFreactor package.</p> <div class="mathmlcontainer flexcontainer"> <div> <math> <munderover> <mo largeop='true'>∫</mo> <mn>0</mn> <mn>1</mn> </munderover> <mfrac> <mrow> <mi>dx</mi> </mrow> <mrow> <mo>(</mo> <mi>a</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <msqrt> <mi>x</mi> </msqrt> </mrow> </mfrac> <mo>=</mo> <mo>π</mo> </math> </div> <div> <math> <msub> <mo largeop='true'>∫</mo> <mn>E</mn> </msub> <mo>(</mo> <mi>α</mi> <mi>f</mi> <mo>+</mo> <mi>β</mi> <mi>g</mi> <mo>)</mo> <mo>d</mo> <mi>μ</mi> <mo>=</mo> <mi>α</mi> <mi> </mi> <msub> <mo largeop='true'>∫</mo> <mn>E </mn> </msub> <mi>f </mi> <mi> </mi> <mo>d</mo> <mi>μ</mi> <mo>+</mo> <mi>β</mi> <mi> </mi> <msub> <mo largeop='true'>∫</mo> <mn>E </mn> </msub> <mi>g</mi> <mi> </mi> <mo>d</mo> <mi>μ</mi> </math> </div> <div> <math> <mi>A</mi> <mo>=</mo> <mo> ( </mo> <mtable> <mtr> <mtd> <mn>9</mn> </mtd> <mtd> <mn>8</mn> </mtd> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>7</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> <mtd> <mn>9</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>6</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>5</mn> </mtd> </mtr> </mtable> <mo> ) </mo> <mtext> or </mtext> <mi>A</mi> <mo>=</mo> <mo> [ </mo> <mtable> <mtr> <mtd> <mn>9</mn> </mtd> <mtd> <mn>8</mn> </mtd> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>7</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> <mtd> <mn>9</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>6</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>5</mn> </mtd> </mtr> </mtable> <mo> ] </mo> </math> </div> <div> <math> <mo> [ </mo> <mtable> <mtr> <mtd> <msub><mi>a</mi> <mn>11</mn></msub> <mo>−</mo> <mi>λ</mi></mtd> <mtd> <mtext>⋯</mtext> </mtd> <mtd> <msub><mi>a</mi> <mn>1n</mn></msub></mtd> </mtr> <mtr> <mtd> <mtext>⋮</mtext> </mtd> <mtd> <mtext>⋱</mtext> </mtd> <mtd> <mtext>⋮</mtext> </mtd> </mtr> <mtr> <mtd> <msub><mi>a</mi> <mn>n1</mn></msub> </mtd> <mtd> <mtext>⋯</mtext> </mtd> <mtd> <msub><mi>a</mi> <mn>nn</mn></msub> <mo>−</mo> <mi>λ</mi></mtd> </mtr> </mtable> <mo> ] </mo> <mtext> </mtext> <mo> [ </mo> <mtable> <mtr> <msub><mi>x</mi> <mn>1</mn></msub> </mtr> <mtr> <mtext>⋮</mtext> </mtr> <mtr> <msub><mi>x</mi> <mn>n</mn></msub> </mtr> </mtable> <mo> ] </mo> <mo>=</mo> <mn>0</mn> </math> </div> <div> <math> <msqrt> <mi>x</mi> <mo>−</mo> <mn>3</mn> </msqrt> <mo>+</mo> <msqrt> <mn>3</mn> <mi>x</mi> </msqrt> <mo>+</mo> <msqrt> <mfrac> <mrow> <msqrt> <mn>3</mn> <mi>x</mi> </msqrt> </mrow> <mrow> <mi>x</mi> <mo>−</mo> <mn>3</mn> </mrow> </mfrac> </msqrt> <mo>+</mo> <mi>i</mi> <mfrac> <mrow> <mi>y</mi> </mrow> <mrow> <msqrt> <mn>2</mn> <mo>(</mo> <mi>r</mi> <mo>+</mo> <mi>x</mi> <mo>)</mo> </msqrt> </mrow> </mfrac> </math> </div> <div> <math> <munderover> <mo moveablelimits='false'>∑</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>t</mi> </munderover> <mi>f</mi> <mn>(</mn> <mn>2</mn> <mi>n</mi> <mn>)</mn> <mo>+</mo> <munderover> <mo moveablelimits='false'>∑</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>t</mi> </munderover> <mi>f</mi> <mn>(</mn> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mn>)</mn> <mo>=</mo> <munderover> <mo moveablelimits='false'>∑</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>t</mi> <mo>+</mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mn>(</mn> <mi>n</mi> <mn>)</mn> </math> </div> <div> <math> <msqrt> <msup> <mi>x</mi> <mn>2</mn> </msup> </msqrt> <mo>=</mo> <mo stretchy="false">|</mo> <mi>x</mi> <mo stretchy="false">|</mo> <mo>=</mo> <mo> { </mo> <mtable> <mtr> <mi>+x</mi> <mtext>, if </mtext><mi>x</mi><mo>></mo><mn>0</mn></mtr> <mtr> <mn>0</mn> <mtext>, if </mtext><mi>x</mi><mo>=</mo><mn>0</mn></mtr> <mtr> <mi>−x</mi> <mtext>, if </mtext><mi>x</mi><mo><</mo><mn>0</mn></mtr> </mtable> </math> </div> <div> <math> <mi>H</mi> <mo stretchy="false">(</mo> <mi>j</mi> <mi>ω</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo> { </mo> <mtable> <mtr> <msup> <mi>x</mi> <msub> <mrow> <mo>−</mo> <mi>j</mi> <mi>ω</mi> <mi>σ</mi> </mrow> <mn>0</mn> </msub> </msup> <mtext>for</mtext> <mo>|</mo> <mi>ω</mi> <mo>|</mo> <mo><</mo> <msub> <mi>ω</mi> <mi>σ</mi> </msub> </mtr> <mtr> <mn>0</mn> <mtext>for</mtext> <mo>|</mo> <mi>ω</mi> <mo>|</mo> <mo>></mo> <msub> <mi>ω</mi> <mi>σ</mi> </msub> </mtr> </mtable> </math> </div> <div> <math> <mrow> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>-</mo> <mi>b</mi> </mrow> <mo>±</mo> <msqrt> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>-</mo> <mrow> <mn>4</mn> <mo></mo> <mi>a</mi> <mo></mo> <mi>c</mi> </mrow> </mrow> </msqrt> </mrow> <mrow> <mn>2</mn> <mo></mo> <mi>a</mi> </mrow> </mfrac> </mrow> </math> </div> <div> <math> <mi>f</mi> <mo>'</mo> <mn>(</mn> <mi>a</mi> <mn>)</mn> <mo>=</mo> <munder> <mo moveablelimits='false'>lim</mo> <mi>h→0</mi> </munder> <mfrac> <mrow> <mi>f</mi> <mo>(</mo> <mi>a</mi> <mi>+</mi> <mi>h</mi> <mo>)</mo> <mo>−</mo> <mi>f</mi> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <mi>h</mi> </mfrac> </math> </div> <div> <math> <mstyle displaystyle="true"> <mn>1</mn> <mo>+</mo> <munderover> <mo moveablelimits='false'>∑</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>∞</mn> </munderover> <mfrac> <mrow> <msup> <mi>q</mi> <msup> <mrow> <mi>k</mi> <mo>+</mo> <mi>k</mi> </mrow> <mn>2</mn> </msup> </msup> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>−</mo> <mi>q</mi> <mo>)</mo> <mo>(</mo> <mn>1</mn> <mo>−</mo> <msup> <mi>q</mi> <mn>2</mn> </msup> <mo>)</mo> <mtext>…</mtext> <mo>(</mo> <mn>1</mn> <mo>−</mo> <msup> <mi>q</mi> <mn>k</mn> </msup> <mo>)</mo> </mrow> </mfrac> <mo>=</mo> <munderover> <mo moveablelimits='false'>∏</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mn>∞</mn> </munderover> <mfrac> <mrow> <mn>1</mn> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>−</mo> <msup> <mi>q</mi> <mrow> <mn>5</mn> <mi>j</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mo>)</mo> <mo>(</mo> <mn>1</mn> <mo>−</mo> <msup> <mi>q</mi> <mrow> <mn>5</mn> <mi>j</mi> <mo>+</mo> <mn>3</mn> </mrow> </msup> <mo>)</mo> </mrow> </mfrac> <mtext>, for </mtext> <mtext>|</mtext> <mi>q</mi> <mtext>|</mtext> <mo><</mo> <mn>1</mn> </mstyle> </math> </div> </div> <!-- SVG --> <h2>Scalable Vector Graphics</h2> <p>This chapter shows the SVG capabilities of PDFreactor by displaying various types of scalable vector graphics.</p> <p class="svgIcons"><img src="chart.svg" class="svgIcon" /> <img src="triangle.svg" class="svgIcon" /> <img src="mainframe.svg" class="svgIcon" /> <img src="sticker.svg" class="svgIcon" /></p> <!-- PDF Images --> <h2>PDF Images</h2> <p>This chapter shows that PDFreactor can automatically embed other PDFs as images. Any page from the PDF can be displayed as an image, in this case we are displaying the second page.</p> <p><img src="resources/magazine.pdf" style="width: 50%; -ro-source-page: 2" /></p> </body> </html>