
 PDFreactor Migration Guide

 Migrating from PDFreactor 11.4 to PDFreactor 11.5

 PDFreactor Web Service Changes

 Temporary Document Structure

 In previous versions of PDFreactor, the service stored temporary documents either in a default
 directory or in a directory supplied by the docTempDir server parameter.
 To better support file systems that are shared between multiple services, it now uses a flat
 structure.

 In the rare case where server admins access the temporary document storage directly, the approach
 might need to be adjusted.
 Alternatively, you can restore the previous behavior by using the docTempStructure
 server parameter and supplying the value datetime.

 Note that the datetime structure is not recommended for shared file systems as it can
 lead to race conditions.

 Migrating from PDFreactor 11.3 to PDFreactor 11.4

 Layout Changes

 Clipping of Multi-column Content

 In earlier versions of PDFreactor, content inside columns of a multi-column element could not
 overflow its column, and thus not overlap the content of the next column. Instead it was clipped between
 the columns. This behavior has been updated to match the browser behavior and the latest CSS
 specifications, which means that such overflowing content is now allowed.

 To restore the legacy behavior, the new proprietary property -ro-column-clip has been introduced,
 which has to be applied on the multi-column element:

 .multi-column-element {
 -ro-column-clip: auto;
}

 Updated Column Count Computation of Multi-column

 The algorithm to determine the column count of a multi-column element has been updated to the
 latest specifications. The main difference is that in the earlier version, setting values to both
 column-count and column-width at the same time caused the column-count value to be ignored.
 With the new implementation, it acts a maximum for the column count.

 To restore the behavior of the old algorithm for cases where both column-width and column-count have
 been set, override the value of column-count with auto:

 .multi-column-element {
 column-count: auto;
}

 Tables with min- and max-widths

 PDFreactor 11.4 now supports the min-width and max-width properties on table root elements.
 If these properties are present in existing documents it can lead to a different layout result.
 In order to revert such changes the following styles can be used:

 table {
 min-width: auto;
 max-width: none;
}

 Migrating from PDFreactor 11.x to PDFreactor 11.3

 API Related Changes

 Asset Packages

 In earlier versions of PDFreactor, Asset Package conversions would automatically block certain URL connections, such as
 connections to local HTTP addresses, and would allow connections to JARs which were in the class path. This behavior was
 confusing and had nothing to do with Asset Packages. So from PDFreactor 11.3 onwards, only file system access outside of
 the Asset Package structure is prohibited. If you still want to prohibit connections to local HTTP addresses or if you
 want to allow access to specific JARs or other files, use PDFreactor's
 security settings.

 Error Policies and Debug Settings

 Having any DebugSettings specified in the PDFreactor configuration no longer disables
 error policies to make sure that the resulting document and the conversion process is altered
 as little as possible.

 Package Related Changes

 .NET Standard 2.0 API Path

 The location of the The .NET Standard 2.0 API library pdfreactor.dll file changed. It
 is now located at clients/netstandard2/lib/PDFreactor.dll instead of
 clients/netstandard2/bin/PDFreactor.dll in the PDFreactor installation package or
 installation directory.

 Migrating from PDFreactor 10 to PDFreactor 11

 API Related Changes

 Legacy API

 The deprecated legacy API in the package com.realobjects.pdfreactor.legacy has been removed.
 If you are still using the legacy API, refer to the New API migration guide section.

 Default Behavior Changes

 The creation of PDF bookmarks and links is now enabled by default.

 To disable the creation of bookmarks and links, use the following new configuration
 properties:

 	disableBookmarks
	disableLinks

 config.setDisableBookmarks(true);
config.setDisableLinks(true);

 Deprecated API

 The following configuration properties have been deprecated and their functionality
 was moved to other properties:

 	addBookmarks → disableBookmarks
	addLinks → disableLinks
	baseURL → baseUrl
	logger → loggers

 Custom URL Stream Handlers

 To configure a CustomUrlStreamHandler for all protocols, in PDFreactor 11, use an asterisk as
 value for the handler's protocol property.
 Previously, you had to use an empty string, which
 is now deprecated.

 config.setCustomUrlStreamHandlers(
 new CustomUrlStreamHandler()
 .setProtocol("*") // empty string ("") is deprecated
 .setHandler(new URLStreamHandler() {
 // your implementation
 })
);

 JavaScript Exports

 When exporting an empty string from JavaScript using the ro.exports property, it is
 now converted to null when accessed through the Result object in the
 PDFreactor integration.

 PDFreactor Web Service Client API Improvements

 In previous versions, the PDFreactor Web Service Clients were known as Wrappers or Wrapper-APIs. They are
 now consistently named clients and their directories in the package have been renamed accordingly.

 Also, various methods in the Clients did throw generic exceptions or errors.
 In PDFreactor 11, these exceptions and errors are now typed and can be explicitly handled in the
 integration code if so desired.

 This does not affect the Java or .NET Clients, as they already threw typed exceptions in previous
 versions.

 JavaScript/Node.js

 try {
 // ...
} catch (e) {
 if (e instanceof PDFreactor.PDFreactorWebserviceError) {
 // Since 'e' is now an object, use 'e.message' to access the error message
 // ...
 }
}

 PHP

 try {
 // ...
} catch (Exception $e) {
} catch (PDFreactorWebserviceException $e) {
 // ...
}

 Python

 try:
 # ...
except Exception as e:
except PDFreactorWebserviceException as e:
 # ...
}

 Ruby

 begin
 # ...
rescue Exception => error
rescue PDFreactor::PDFreactorWebserviceError => error
 # ...
}

 Perl

 eval {
 # ...
} || do {
 if ($e->isa("PDFreactor::PDFreactorWebserviceException")) {
 # ...
 }
}

 CSS Related Changes

 Case-Sensitivity of Selectors

 In previous versions of PDFreactor, CSS selectors were generally case-insensitive. However, this has been changed
 in order to comply with the latest HTML 5 specifications.

 For example, ID and class selectors are now case-sensitive. This means that if such selectors used incorrect casing,
 these will have to be adjusted or they will no longer be applied as intended.

 When using an attribute selector to compare attribute values, this compare is now case-sensitive in certain cases,
 depending on the attribute name. The selector can be modified with an i, to make it case-insensitive again:

li[class^="a"] { /*...*/ } /* Matches class="a", but not class="A" */
li[class^="a" i] { /*...*/ } /* Matches both class="a" and class="A" */

 Image Orientation

 PDFreactor now reads orientation data from images by default and rotates the images accordingly.

 :root {
 -ro-image-orientation: none;
}

 Absolute Positioning Against Pages

 Absolute positioning has been corrected, so when boxes are positioned against their page
 they are positioned against the pages content box instead of its padding box.

 body > div.pos {
 -ro-position-origin: padding-box;
 position: absolute;
 /* top: ...*/
}

 Default Break Styles of HTML Lists

 The HTML list elements , and <dl> no longer set 'break-before: avoid'.

 ol, ul, dl {
 break-before: avoid;
}

 Separate Media Feature Values for PDF Output and Preview

 The proprietary CSS media feature '-ro-output-format: pdf' no longer matches when the document is viewed in the PDFreactor Preview application, only for
 actual conversions to PDF. To specify styles that should apply in the Preview App, the new value viewer has been introduced.

 /* equals the old behavior of 'pdf' */
@media (-ro-output-format: pdf), (-ro-output-format: viewer) {
 /*...*/
}

 Integer Values

 CSS properties that accept integer values are now invalid if float numbers are used
 instead. While in previous versions, a float was accepted as long as it was a
 whole number (e.g. 'counter-increment: counter 1.0' used to work), this is no
 no longer the case.

 The only way to restore the previous behavior is to disable CSS validation:

 config.setCssSettings(new CssSettings().setValidationMode(CssPropertySupport.ALL));

 Other Functionality Changes

 Barcodes

 PDFreactor now includes new proprietary CSS properties for detailed control over barcodes,
 deprecating the old functionality, which was based on XML.
 Legacy barcodes still work, but only if the correct namespace was set on the barcode element:

 <barcode:barcode xmlns:barcode="http://barcode4j.krysalis.org/ns"
message="123456789012">
 <barcode:ean-13/>
</barcode:barcode>

 Also, please note that there is no separate barcode type for GS1-128/EAN128 barcodes. To create them, you
 need to generate a Code128 barcode and set its encoding to gs1:

 .gs1-128 {
 -ro-barcode-type: code128;
 -ro-barcode-encoding: gs1;
}

 More information on the new properties can be found in the manual.

 New Command Line Interfaces

 PDFreactor 8 introduced a new Python-based command line interface (CLI) which replaced the old Java-based CLI. However, the Python
 CLI was dependent on the PDFreactor Web Service and had some inherent limitations.

 PDFreactor 11 again includes a Java-based CLI that can be used without a service.
 Both this new CLI, as well as the Python one, now use a new API:

 API Changes

 One major change is that you can only specify simple configuration properties directly (i.e. properties that
 take string, number, boolean or enum parameters). Complex properties have to be specified in a separate JSON file.
 This makes the API cleaner and easier to use. There are still shortcuts to add user style sheets and user scripts.

 python pdfreactor.py -i in.html -o out.pdf -c style.css -C additionalConfig.json

 java -jar pdfreactor.jar -i in.html -o out.pdf -c style.css -C additionalConfig.json

 pdfreactor.exe

 The pdfreactor.exe file is now an executable for the new Java-based CLI, so integrators relying on
 the PDFreactor Web Service may have to adjust their integration or use the Python-based CLI via the
 pdfreactor.py script.

 Common CLI API

 Below is a quick overview of CLI-specific arguments. The list does not include configuration properties.
 Please also refer to the documentation of the respective CLI, via the -h parameter.

 	Arg	Description
	-h	Help
	-i	Input document
	-o	Output document
	-c	Additional CSS (supports: content, file and URL)
	-j	Additional JavaScript (supports: content, file and URL)
	-x	Additional XSLT (supports: content, file and URL)
	-C	Additional configuration in JSON format
	-v	Verbose logging output
	-q	Quiet mode (no logging output)
	-d	Debug mode
	-I	Inspectable mode
	-V	Show version
	-N	Number of runs (Java only)
	-W	Number of warm-ups (Java only)
	-s	Server URL (Python only)
	-a	Treat input as Asset Package (Python only)

 Migrating from PDFreactor 10.0 to PDFreactor 10.1

 Security Enhancements

 PDFreactor now features configurable security behavior to prevent attacks in form of the injection of malicious code from
 potentially untrusted third parties that produce content which is converted by PDFreactor.

 Updated Default Behavior

 Because of the default security settings, there are some behavior changes:

 	When converting XML documents, PDFreactor will no longer automatically load external XML parser resources, such as DTDs, entities
 or XIncludes.
	Document resources can no longer be loaded from the server's file system by default.

 Please refer to the PDFreactor manual for a detailed description of the security settings and the default behavior.

 You can recreate the previous unsafe behavior by using the following security settings. This also works in the
 deprecated legacy API. Please note that this is strongly
 discouraged if you process content from potentially untrusted sources.

 config.setSecuritySettings(new SecuritySettings()
 .setAllowExternalXmlParserResources(true)
 .setDefaults(new SecurityDefaults()
 .setAllowFileSystemAccess(true)));

 PDFreactor Web Service

 PDFreactor Web Service users can configure the security settings via server parameters. Please refer to the manual
 for more information.

 Migrating from PDFreactor 9 to PDFreactor 10

 Important!

 PDFreactor Web Service users: If you have customized the "start.ini" file of the Jetty server,
 please see section PDFreactor Web Service Jetty before installing PDFreactor 10.

 Updated Default Behavior

 CSS Validation

 The CSS Validator is now enabled by default. In PDFreactor 9 the validation was disabled, thus invalid values could
 overwrite valid ones. Now with the validation enabled, invalid values are completely ignored, as if they
 were not in the style rule.

 To disable the Validator, use the API method setCssSettings:

 config.setCssSettings(new CssSettings().setValidationMode(CssPropertySupport.ALL));

 Rasterization

 The images that are produced when rasterizing SVGs and canvas elements have now
 a maximum size of 2 megapixels by default. If the image would be larger, the
 resolution is reduced. This way, the used memory and the size of the resulting PDF are reduced.
 The following snippet disables this limit:

 svg, canvas, img, object, embed {
 -ro-rasterization-max-size: none;
}

 The property can also be used to increase the max-size to a certain megapixel value:

 svg, canvas, img, object, embed {
 -ro-rasterization-max-size: 3.5;
}

 MathML

 Rendering MathML now requires the import of a MathML library. We recommend MathJax, as it
 creates better results than the lib PDFreactor used in previous versions.

 If the input document can not be modified, the following user scripts can be defined to include and use MathJax.
 The first script consists of settings for the next one:

 	"roMjPath" must be set to the URL or path to the file MathJax.js, excluding the filename itself.
	"roMjFile" specifies the name of the main MathJax file. It should should usually be left default.
	"roMjSvgBlacker" allows to optionally increase the thickness of the fonts used by MathJax.

 Please see the comments in the snippet for example values:

 roMjPath = ""; // default: "",
 // examples: "MathJax/", "../../resource/js/mathjax/",
 // "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/"
roMjFile = "MathJax.js"; // default: "MathJax.js",
 // examples: "mathjax.js", "mathjaxmod.js"
roMjSvgBlacker = 0; // default: 0,
 // examples: 1, 2

 The second script uses the values form the first one and inserts the required script elements into the document,
 so MathJax is loaded and processes all "math" elements. It does not have to be modified.

 document.documentElement.firstElementChild.insertAdjacentHTML('beforeend',
 '\u003Cscript type="text/x-mathjax-config">MathJax.Hub.Config(' +
 JSON.stringify({
 jax: ["input/MathML", "output/SVG"],
 extensions: ["mml2jax.js"],
 MathML: { extensions: ["content-mathml.js"] },
 SVG: { blacker: (typeof window.roMjSvgBlacker == "number" &&
 window.roMjSvgBlacker > 0 ? window.roMjSvgBlacker : 0) }
 }) +
 ');\u003C/script>\n' +
 '\u003Cscript type="text/javascript" src="' +
 (window.roMjPath ? window.roMjPath : "MathJax/") +
 (window.roMjPath && !(window.roMjPath + "").endsWith("/") ? "/" : "") +
 (window.roMjFile ? window.roMjFile : "MathJax.js") +
 '">\u003C/script>'
);

 text-align

 As defined by the CSS3 specifications, 'text-align' is now handled as a shorthand for
 'text-align-all' and 'text-align-last'. This means that, if
 'text-align-last' is defined before 'text-align', the last line alignment will be overridden.

 This can be avoided by using 'text-align-all' instead of 'text-align'.

 Furthermore 'text-align-last' now also works if the paragraph has not been
 set to 'justify'.

 Form Fields

 The default styles for several form fields was updated to a more modern look. Authors that
 rely on these default styles should verify their documents. If necessary, the legacy styles
 can be recreated using CSS.

 API Changes

 General

 signPDF

 When digitally signing a PDF using the signPDF configuration property, PDFreactor will now throw an exception and thus
 fail the conversion if the PDF could not be signed. Appropriate log entries as well as exception messages will provide
 information as to the reason.

 Java (non-Web Service)

 In previous versions, the "convert" methods were throwing various exceptions. In PDFreactor 10, this has bee reduced to only a single exception type—the
 PDFreactorException. Previously thrown exceptions are now wrapped in PDFreactorExceptions and are available as their cause.
 If you are trying to catch the older exception types in your integration, you will receive compile errors.

 To resolve this, just remove the now superfluous catch blocks:

 try {
 pdfReactor.convert(config);
} catch (PDFreactorException e) {
 // ...
} catch (IOException e) {
 // ...
} catch (SAXException e) {
 // ...
} catch (TransformerException e) {
 // ...
}

 PDFreactor Web Service Jetty

 When upgrading to PDFreactor 10 via one of the installers, an existing "start.ini" file will now always be overwritten. If you have made any changes to it, it is highly
 recommended that you backup these changes before installing PDFreactor 10. The installer will also do a backup of an existing "start.ini" file.

 From PDFreactor 10 onward, any customizations of Jetty should no longer be done in the "start.ini" file but instead in the new "main.ini"
 and other "ini" files located in the "PDFreactor/jetty/start.d" directory.

 JavaScript Client

 The JavaScript client API was changed. Instead of using callback parameters, the API methods now return Promises.

 PDFreactor 9− example:

 pdfReactor.convert(config, function(result) {
 processResult(result);
}, function(error) {
 processError(error);
});

 PDFreactor 10 example:

 try {
 const result = await pdfReactor.convert(config);
 processResult(result);
} catch (error) {
 processError(error);
}

 For more information, please refer to the new JavaScript integration examples and the JavaScript API documentation.

 Java Client

 	
 The class

 com.realobjects.pdfreactor.webservice.client.Log.LogRecord

 has been moved and renamed to

 com.realobjects.pdfreactor.webservice.client.Record

	
 All methods that returned lists now return arrays instead.

 .NET Client

 	
 The namespace of the class

 RealObjects.PDFreactor.Webservice.Client.Log.Record

 has been changed to

 RealObjects.PDFreactor.Webservice.Client.Record

	
 The property

 ExceedingContent

 of the Result class has been renamed to

 ExceedingContents

 Deprecated API

 All APIs

 The configuration properties appendLog and enableDebugMode are now obsolete. Use debugSettings instead.

 	Old API	New API
	Enabling JavaScript
	config.setJavaScriptMode(true);
	config.setJavaScriptSettings(
 new JavaScriptSettings().setEnabled(true));

	Enabling debug mode
	config.setEnableDebugMode(true);
	config.setDebugSettings(
 new DebugSettings().setAll(true));

	Appending the log
	config.setAppendLog(true);
	config.setDebugSettings(
 new DebugSettings().setAppendLogs(true));

	Setting resource timeout
	config.setResourceRequestTimeout(
 Integer);
	config.setResourceReadTimeout(Integer);
config.setResourceConnectTimeout(Integer);

	Setting a color space
	config.setDefaultColorSpace(
 ColorSpace);
	config.setColorSpaceSettings(
 new ColorSpaceSettings().setTargetColorSpace(
 ColorSpace));

 CSS Changes

 string()

 The String-function takes 2 parameters, with the second being a keyword to specify which value should be used,
 if there are multiple assignments for that named string on a single page.

 In accordance with the CSS specifications, the identifier last-except has been renamed.

 The keyword last-except

 content: string(namedString, last-except);

 has been replaced with first-except

 content: string(namedString, first-except);

 which has the same effect.

 Migrating from PDFreactor 8 to PDFreactor 9

 Updated default HTML styles

 With PDFreactor 9 some of the standard HTML styles have been edited to be more in line with the HTML5 specification and modern browsers.
 While most changes are cosmetic, some will influence the layouts of existing documents. When these have a negative impact on existing
 documents and adapting the print styles accordingly is to complex, the following snippets can be used to undo the most significant changes:

 Page Margin

 The default page margins were increased from 1cm to 2cm.

 @page {
 margin: 1cm;
}

 Body Margin

 In previous versions of PDFreactor the default margins of body elements were 8px, in accordance to the HTML specification.
 As these default margins are only useful in non-paged environments they were dropped in PDFreactor 9.

 body {
 margin: 8px;
}

 For this to take effect in multi-page documents the following snippet has to be applied as well.

 Box Decoration Break

 The default value of the property box-decoration-break is now slice, as per the specification. The margin, padding and
 border-width values around page break will be treated as 0.

 * {
 box-decoration-break: clone;
}

 Rounding Mode

 The default value of the proprietary property -ro-rounding-mode is now floor.
 This avoids rare cases where accumulated rounding imprecisions could lead to unexpected layout results,
 but may lead to different line and page-breaks.

 html {
 -ro-rounding-mode: round;
}

 First Page Side

 The default side of first pages has changed from left to recto (i.e. right, unless the document direction is right-to-left),
 as per the specification.

 @-ro-preferences {
 first-page-side: left;
}

 Margins after Breaks

 The top margins of blocks at the start of pages and columns are no longer set to 0 for first pages and columns or after forced breaks.
 This matches the behavior of browsers and the requirements of the latest CSS specifications.

 html {
 -ro-truncate-margin-after-break: always;
}

 However, in most cases it is advisable to apply non-proprietary styles, that result in the same improvement in browsers.

 h1 {
 break-before: page;
 margin-top: 0;
}

div.multiColumn > *:first-child {
 margin-top: 0;
}

 API Changes

 The package of the ExceedingContent class has been changed from

 com.realobjects.pdfreactor.exceedingcontent

 to

 com.realobjects.pdfreactor.contentobserver

 Deprecated API

 Java

 The method setDocument(Object) is obsolete, use setDocument(String),
 setDocument(byte[]) or setDocument(InputSource) instead. This only affects
 the non-client Java library.

 Java and Java Client

 Constructors of inner Configuration classes (except for the KeyValuePair
 class) that take multiple arguments
 have been deprecated and will be removed in a future version. Use the no-argument
 constructor in conjunction with individual setters
 instead. An exception is the KeyValuePair class whose multi-argument constructor is not deprecated.
 Setters now return an instance of the class, thus allowing you to chain
 multiple subsequent setter calls. The following example demonstrates using no-argument constructors
 and chainable setters by adding a user script and a user style sheet to a Configuration
 instance:

 Old API

 config.setAttachments(new Attachment(null, "http://myAttachment.zip", null, null));
config.setUserStyleSheets(new Resource("p { color: red; }", null));

 New API

 config
 .setAttachments(new Attachment().setUri("http://myAttachment.zip"));
 .setUserStyleSheets(new Resource().setContent("p { color: red; }"));

 .NET Client

 Multi-argument constructors are now obsolete in favor of object
 initializers.

 Old API

 config.Attachments.Add(new Attachment(null, "http://myAttachment.zip", null, null));
config.UserStyleSheets.Add(new Resource("p { color: red; }", null));

 New API

 config.Attachments.Add(new Attachment { Uri = "http://myAttachment.zip" });
config.UserStyleSheets.Add(new Resource { Content = "p { color: red; }" });

 PHP Client

 The PDFreactor PHP classes are now located in the namespace
 com\realobjects\pdfreactor\webservice\client\. To adjust your integration,
 just add appropriate use directives like this:

 use com\realobjects\pdfreactor\webservice\client\PDFreactor as PDFreactor;
use com\realobjects\pdfreactor\webservice\client\LogLevel as LogLevel;
use com\realobjects\pdfreactor\webservice\client\ViewerPreferences as ViewerPreferences;
...

 All APIs

 The configuration properties mergeByteArray, mergeByteArrays,
 mergeURL and mergeURLs are now obsolete. Use
 mergeDocuments instead. Note that mergeDocuments takes
 one or more Resource objects,
 so you have to use the appropriate properties of that object, either
 data for binary data or uri for URLs. Java example:

 Old API

 // merge single document from binary source
config.setMergeByteArray(byteArray1);
// merge multiple documents from binary source
config.setMergeByteArrays(byteArray1, byteArray2);
// merge single document from URL source
config.setMergeByteURL(url1);
// merge multiple documents from URL source
config.setMergeByteURLs(url1, url2);

 New API

 // merge single document from binary source
config.setMergeDocuments(new Resource().setData(byteArray1));
// merge multiple documents from binary source
config.setMergeDocuments(new Resource().setData(byteArray1),
 new Resource().setData(binary2));
// merge single document from URL source
config.setMergeDocuments(new Resource().setUri(url1));
// merge multiple documents from URL source
config.setMergeDocuments(new Resource().setUri(url1),
 new Resource().setUri(url2)));

 The ScriptResource type is now deprecated, use Resource instead.
 This change only affects Java and .NET APIs.

 Migrating from PDFreactor 8.0 to PDFreactor 8.1

 Java and .NET Client

 When using either the Java or .NET Clients, your integration has to be adjusted. These clients are now
 based on the REST API rather than the SOAP API. This was done to provide an API that is more in line with
 the other clients.

 PDFreactor Web Service settings

 When using the PDFreactor Web Service with custom settings in the "pdfreactorwebservice.vmoptions" file, you have to
 migrate these settings to the "start.ini" located in the "PDFreactor/jetty" directory.

 If your "pdfreactorwebservice.vmoptions" looked like this

 -Xmx1024m
-Djava.awt.headless=true

 you have to add the lines from your "pdfreactorwebservice.vmoptions" to the end of your "start.ini" file

 --exec
-Dorg.apache.cxf.Logger=org.apache.cxf.common.logging.Slf4jLogger
-Dcom.realobjects.interceptConsoleOutput=true
old pdfreactorwebservice.vmoptions settings
-Djava.awt.headless=true
-Xmx1024m

 Migrating from PDFreactor 7- to PDFreactor 8+

 With PDFreactor 8 we are introducing the first major API change since PDFreactor 2.
 One major benefit of this change is that the new Java API is identical (with a few additions)
 to the newly introduced Java web service client API.

 Using the Legacy Java API

 Java integrators can still use the old API, however we highly recommend to migrate to the new API as
 soon as possible, since the old one will be removed in a future release of PDFreactor.
 To continue using the old legacy API, just change the package from

 com.realobjects.pdfreactor

 to

 com.realobjects.pdfreactor.legacy

 Migrating to the New API

 The Configuration Object

 The most obvious change is the introduction of the Configuration object. In previous versions of PDFreactor,
 you invoked all API methods on the PDFreactor instance, however this had some disadvantages like making the
 PDFreactor instance non-reusable. In PDFreactor 8, you just have to create one instance of PDFreactor. The instance
 only has a few API methods, like convert.

 All settings and options are properties of the configuration and have to be set there. While most methods are the
 same as in previous versions of PDFreactor, some have changed. For example, instead of add-methods,
 getters are used to retrieve lists on which new entries can be added. Make sure to consult the API documentation.

 Converting

 To create a PDF or image, you now just have to call the convert method with the configuration as a
 single parameter, which also specifies the input document.
 PDFreactor automatically detects if you are converting an HTML string, a URL or binary data.

 Retrieving the Result

 The new convert(Configuration) method no longer returns the PDF as binary directly. It returns a Result
 object which not only contains the PDF as binary, but also other useful data such as the log.

 There are additional convert methods, such as convert(Configuration, OutputStream) which writes
 the PDF directly in the specified OutputStream instead of returning it or convertAsBinary(Configuration)
 which returns the binary data directly instead of a Result object. Please make sure to read the API documentation and
 the PDFreactor manual (Chapter "Integration").

 Examples

 Below are simple examples in different programming languages that show how PDFreactor
 was used previously and how it is used now.

 	Java
	.NET
	PHP
	Python
	Ruby
	Perl

 Java

 Old API

 PDFreactor pdfReactor = new PDFreactor();

// simple settings
pdfReactor.setAddBookmarks(true);
pdfReactor.setAddLinks(true);

// adding a user style sheet
pdfReactor.addUserStyleSheet("p { color: red }", null, null, null);

// create PDF and specify the document
byte[] pdf = pdfReactor.renderDocumentFromURL("https://www.realobjects.com");

 New API

 PDFreactor pdfReactor = new PDFreactor();
Configuration config = new Configuration();

// specify the document
config.setDocument("https://www.realobjects.com");

// simple settings
config.setAddBookmarks(true);
config.setAddLinks(true);

// adding a user style sheet
config.getUserStyleSheets().add(new Resource("p { color: red }", null));

// create PDF
Result result = pdfReactor.convert(config);
byte[] pdf = result.getDocument();

 .NET

 Old API

 PDFreactor pdfReactor = new PDFreactor();

// simple settings
pdfReactor.SetAddBookmarks(true);
pdfReactor.SetAddLinks(true);

// adding a user style sheet
pdfReactor.AddUserStyleSheet("p { color: red }", "", "", "");

// create PDF and specify the document
byte[] pdf = pdfReactor.RenderDocumentFromURL("https://www.realobjects.com");

 New API (Changed in version 8.1)

 PDFreactor pdfReactor = new PDFreactor();
Configuration config = Configuration();

// specify the document
config.Document = "https://www.realobjects.com";

// simple settings
config.AddBookmarks = true;
config.AddLinks = true;

// adding a user style sheet
config.UserStyleSheets = new List<Resource> {new Resource("p { color: red }", "")};

// create PDF
Result result = pdfReactor.Convert(config);
byte[] pdf = result.Document;

 PHP

 Old API

 $pdfReactor = new PDFreactor();

// simple settings
$pdfReactor->setAddBookmarks(true);
$pdfReactor->setAddLinks(true);

// adding a user style sheet
$pdfReactor->addUserStyleSheet("p { color: red }", "", "", "");

// create PDF and specify the document
$result = $pdfReactor->renderDocumentFromURL("https://www.realobjects.com");

 New API

 $pdfReactor = new PDFreactor();
$config = array(
 // specify the document
 "document" => "https://www.realobjects.com",

 // simple settings
 "addBookmarks" => true,
 "addLinks" => true,

 // adding a user style sheet
 "userStyleSheets" => array(
 array(
 "content"=> "p { color: red }"
)
)
);

// create PDF
// ...as base64 encoded String
$result = $pdfReactor->convert($config);
$pdf = $result->document;

// ...as binary
$pdf = $pdfReactor->convertAsBinary($config);

 To convert the base64 encoded document into binary data, you can do the following:

 echo base64_decode($result->document);

 Python

 Old API

 pdfReactor = PDFreactor()

simple settings
pdfReactor.setAddBookmarks(True)
pdfReactor.setAddLinks(True)

adding a user style sheet
pdfReactor.addUserStyleSheet("p { color: red }", "", "", "")

create PDF and specify the document
result = pdfReactor.renderDocumentFromURL("https://www.realobjects.com");

 New API

 pdfReactor = PDFreactor()
config = {
 # specify the document
 'document': "https://www.realobjects.com",

 # simple settings
 'addBookmarks': True,
 'addLinks': True,

 # adding a user style sheet
 'userStyleSheets': [
 {
 'content': "p { color: red }"
 }
]
}

create PDF
...as base64 encoded String
result = pdfReactor.convert(config)
pdf = result['document']

...as binary
pdf = pdfReactor.convertAsBinary(config)

 To convert the base64 encoded document into binary data, you can do the following:

 import base64
print(base64.b64decode(result['document']))

 Ruby

 Old API

 pdfReactor = PDFreactor.new();

simple settings
pdfReactor.setAddBookmarks(true)
pdfReactor.setAddLinks(true)

adding a user style sheet
pdfReactor.addUserStyleSheet("p { color: red }", "", "", "")

create PDF and specify the document
result = pdfReactor.renderDocumentFromURL("https://www.realobjects.com")

 New API

 pdfReactor = PDFreactor.new()
config = {
 # specify the document
 document: "https://www.realobjects.com",

 # simple settings
 addBookmarks: true,
 addLinks: true,

 # adding a user style sheet
 userStyleSheets: [
 {
 content: "p { color: red }"
 }
]
}

create PDF
...as base64 encoded String
result = pdfReactor.convert(config)
pdf = result["document"]

...as binary
pdf = pdfReactor.convertAsBinary(config)

 To convert the base64 encoded document into binary data, you can do the following:

 require "base64"
print Base64.decode64(result["document"])

 Perl

 Old API

 my $pdfReactor = PDFreactor -> new();

simple settings
$pdfReactor -> setAddBookmarks('true');
$pdfReactor -> setAddLinks('true');

adding a user style sheet
$pdfReactor -> addUserStyleSheet("p { color: red }", "", "", "");

create PDF and specify the document
$result = pdfReactor -> renderDocumentFromURL("https://www.realobjects.com");

 New API

 my $pdfReactor = PDFreactor -> new();
$config = {
 # specify the document
 'document' => "https://www.realobjects.com",

 # simple settings
 'addBookmarks' => 'true',
 'addLinks' => 'true',

 # adding a user style sheet
 'userStyleSheets' => [
 {
 'content' => "p { color: red }"
 }
]
};

create PDF
...as base64 encoded String
$result = $pdfReactor -> convert($config);
$pdf = $result->{'document'};

...as binary
$pdf = $pdfReactor -> convertAsBinary($config);

 To convert the base64 encoded document into binary data, you can do the following:

 use MIME::Base64 ();
print MIME::Base64::decode($result->{'document'});

